Compare commits
4 Commits
fdbe6fb70b
...
1a8afb97d0
| Author | SHA1 | Date |
|---|---|---|
|
|
1a8afb97d0 | |
|
|
803a8ffee1 | |
|
|
41a64ab470 | |
|
|
0792d87394 |
125
field.py
125
field.py
|
|
@ -771,11 +771,11 @@ class Features3d:
|
||||||
# of the normal has to be chosen which defaults to the z-component and is set by
|
# of the normal has to be chosen which defaults to the z-component and is set by
|
||||||
# 'cellvol_normal_component'.
|
# 'cellvol_normal_component'.
|
||||||
if report: print('[Features3d.triangulate] calculating area and volume per cell...')
|
if report: print('[Features3d.triangulate] calculating area and volume per cell...')
|
||||||
U = points[faces[:,1],:]
|
A = points[faces[:,1],:]
|
||||||
V = points[faces[:,2],:]
|
B = points[faces[:,2],:]
|
||||||
W = points[faces[:,3],:]
|
C = points[faces[:,3],:]
|
||||||
cn = np.cross(U-W,V-U)
|
cn = np.cross(B-A,C-A)
|
||||||
cc = (U+V+W)/3
|
cc = (A+B+C)/3
|
||||||
area = 0.5*np.sqrt(np.square(cn).sum(axis=1))
|
area = 0.5*np.sqrt(np.square(cn).sum(axis=1))
|
||||||
vol = 0.5*cn[:,cellvol_normal_component]*cc[:,cellvol_normal_component]
|
vol = 0.5*cn[:,cellvol_normal_component]*cc[:,cellvol_normal_component]
|
||||||
# Now the label is known per cell. We only need to find all cells with the same label
|
# Now the label is known per cell. We only need to find all cells with the same label
|
||||||
|
|
@ -880,23 +880,51 @@ class Features3d:
|
||||||
'''Returns an array with volumes of all features.'''
|
'''Returns an array with volumes of all features.'''
|
||||||
return np.add.reduceat(self._cell_volumes,self._offset[:-1])
|
return np.add.reduceat(self._cell_volumes,self._offset[:-1])
|
||||||
|
|
||||||
def find_feature(self):
|
def find_feature(self,pts):
|
||||||
|
'''Find nearest triangle from point R in direction ±dR and its orientation w.r.t dR.
|
||||||
|
The algorithm determines the closest intersection of a ray cast from the origin of the
|
||||||
|
point in the specified direction (with positiv and negative sign). The ray is supposed to
|
||||||
|
be sent in a direction perpendicular to any boundary. Periodicity does not matter here.
|
||||||
|
The ray-triangle intersection is implemented by the Möller–Trumbore algorithm (see method
|
||||||
|
'ray_triangle_intersection()' for details). Whether a hit occured from the interior
|
||||||
|
or the exterior is determined by the direction of the surface normal of the triangle
|
||||||
|
and the direction of the ray.
|
||||||
|
This method is very similar to 'ray_triangle_intersection()', but takes advantage of
|
||||||
|
the fact that only the nearest intersection is to be returned.
|
||||||
|
Input:
|
||||||
|
R, dR: the point to be checked and the direction of the ray as (3,) numpy arrays
|
||||||
|
A,B,C: vertices of N triangles as (N,3) numpy arrays
|
||||||
|
Returns:
|
||||||
|
is_inside: is point inside? [bool]
|
||||||
|
t: parameter to determine intersection point (x = R+t*dR) [float]
|
||||||
|
hit_dir: direction from which the triangle was hit, from inward/outward = +1,-1 [int]
|
||||||
|
'''
|
||||||
# coords = np.array(coords)
|
# coords = np.array(coords)
|
||||||
# assert coords.ndim==2 and coords.shape[1]==3, "'coords' need to be provided as Nx3 array."
|
# assert coords.ndim==2 and coords.shape[1]==3, "'coords' need to be provided as Nx3 array."
|
||||||
from time import time
|
from time import time
|
||||||
from scipy import spatial
|
from scipy import spatial
|
||||||
|
from .jit import minmax
|
||||||
|
|
||||||
|
# pts = np.random.random((10000,3))
|
||||||
|
|
||||||
|
print(self._points[self._faces[:,1:],0].shape)
|
||||||
t = time()
|
t = time()
|
||||||
|
|
||||||
xmin = np.amin(self._points[self._faces[:,1:],0],axis=1)
|
# xmin = np.amin(self._points[self._faces[:,1:],0],axis=1)
|
||||||
xmax = np.amax(self._points[self._faces[:,1:],0],axis=1)
|
# xmax = np.amax(self._points[self._faces[:,1:],0],axis=1)
|
||||||
zmin = np.amin(self._points[self._faces[:,1:],2],axis=1)
|
# zmin = np.amin(self._points[self._faces[:,1:],2],axis=1)
|
||||||
zmax = np.amax(self._points[self._faces[:,1:],2],axis=1)
|
# zmax = np.amax(self._points[self._faces[:,1:],2],axis=1)
|
||||||
|
# print(time()-t)
|
||||||
|
xmin,xmax = minmax(self._points[self._faces[:,1:],0])
|
||||||
|
zmin,zmax = minmax(self._points[self._faces[:,1:],2])
|
||||||
|
print(time()-t)
|
||||||
|
# print(xmin.shape,xmin2.shape)
|
||||||
|
# print(np.all(np.isclose(xmin,xmin2)))
|
||||||
|
|
||||||
center = np.stack((0.5*(xmax+xmin),0.5*(zmax+zmin)),axis=1)
|
center = np.stack((0.5*(xmax+xmin),0.5*(zmax+zmin)),axis=1)
|
||||||
radius = np.sqrt(2.0)*np.maximum(
|
radius = 0.5*np.amax(np.sqrt((xmax-xmin)**2+(zmax-zmin)**2))
|
||||||
np.amax(0.5*(xmax-xmin)),
|
print(time()-t)
|
||||||
np.amax(0.5*(zmax-zmin)))
|
del xmin,xmax,zmin,zmax
|
||||||
print('Preparation for KD tree in',time()-t)
|
print('Preparation for KD tree in',time()-t)
|
||||||
|
|
||||||
t = time()
|
t = time()
|
||||||
|
|
@ -906,8 +934,6 @@ class Features3d:
|
||||||
# kd = spatial.KDTree(self._points[:,1:],leafsize=10,compact_nodes=True,copy_data=False,balanced_tree=True)
|
# kd = spatial.KDTree(self._points[:,1:],leafsize=10,compact_nodes=True,copy_data=False,balanced_tree=True)
|
||||||
print('KD tree built in',time()-t)
|
print('KD tree built in',time()-t)
|
||||||
|
|
||||||
query = np.random.random((10000,2))
|
|
||||||
|
|
||||||
# t = time()
|
# t = time()
|
||||||
# map_ = self._points.shape[0]*[[]]
|
# map_ = self._points.shape[0]*[[]]
|
||||||
# for ii,face in enumerate(self._faces[:,1:].ravel()):
|
# for ii,face in enumerate(self._faces[:,1:].ravel()):
|
||||||
|
|
@ -917,20 +943,81 @@ class Features3d:
|
||||||
# for vertex_index in face:
|
# for vertex_index in face:
|
||||||
# faces_connected_to_vertex.setdefault(vertex_index,[]).append(face_index)
|
# faces_connected_to_vertex.setdefault(vertex_index,[]).append(face_index)
|
||||||
# print('Inverted cells-faces',time()-t)
|
# print('Inverted cells-faces',time()-t)
|
||||||
|
# radius = np.sqrt(np.sum(self.spacing[1:]**2))
|
||||||
radius = np.sqrt(np.sum(self.spacing[1:]**2))
|
|
||||||
|
|
||||||
t = time()
|
t = time()
|
||||||
kd.query_ball_point(query,radius)
|
bla = kd.query_ball_point(pts[:,[0,2]],radius)
|
||||||
print('KD tree query',time()-t)
|
print('KD tree query',time()-t)
|
||||||
|
|
||||||
|
t__ = time()
|
||||||
|
Npts = pts.shape[0]
|
||||||
|
print(pts.shape,Npts)
|
||||||
|
dR = (0,1,0)
|
||||||
|
is_inside = np.empty((Npts,),dtype=bool)
|
||||||
|
print(is_inside.shape)
|
||||||
|
for ii in range(Npts):
|
||||||
|
hit_idx,t,N = Features3d.ray_triangle_intersection(pts[ii],dR,
|
||||||
|
self._points[self._faces[bla[ii],1]],
|
||||||
|
self._points[self._faces[bla[ii],2]],
|
||||||
|
self._points[self._faces[bla[ii],3]])
|
||||||
|
if hit_idx is None:
|
||||||
|
is_inside[ii] = False
|
||||||
|
else:
|
||||||
|
idx = np.argmin(np.abs(t))
|
||||||
|
is_inside[ii] = t[idx]*(N[idx,:]*dR).sum(axis=-1)>0
|
||||||
|
print('inside check',time()-t__)
|
||||||
|
|
||||||
|
# print(is_inside)
|
||||||
|
# The provided vertices do not need to form a closed surface! This means they can be
|
||||||
|
# filtered before being passed to this function.
|
||||||
|
|
||||||
# print(radius)
|
# print(radius)
|
||||||
# print(len(kd.query_ball_point((0.5,0.0),radius,return_sorted=True)),self._points.shape[0])
|
# print(len(kd.query_ball_point((0.5,0.0),radius,return_sorted=True)),self._points.shape[0])
|
||||||
|
|
||||||
|
|
||||||
# yset = set(x.data for x in sorted(treey.at(0.0)))
|
# yset = set(x.data for x in sorted(treey.at(0.0)))
|
||||||
# zset = set(x.data for x in sorted(treez.at(0.0)))
|
# zset = set(x.data for x in sorted(treez.at(0.0)))
|
||||||
return
|
return is_inside
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def ray_triangle_intersection(R,dR,A,B,C):
|
||||||
|
'''Implements the Möller–Trumbore ray-triangle intersection algorithm. I modified the
|
||||||
|
formulation of
|
||||||
|
https://stackoverflow.com/questions/42740765/intersection-between-line-and-triangle-in-3d
|
||||||
|
because it computes the cell normal on the way, which is needed to determine the
|
||||||
|
direction of the hit, i.e. from the inside or outside.
|
||||||
|
Input:
|
||||||
|
R, dR: origin and direction of the ray as (3,) numpy arrays
|
||||||
|
A,B,C: vertices of N triangles as (N,3) numpy arrays
|
||||||
|
Returns:
|
||||||
|
hit_idx: index of the input triangles which returned a hit. [(Nhit,) int]
|
||||||
|
t: parameter to determine intersection point (x = R+t*dR) [(Nhit,) float]
|
||||||
|
N: normal vector of triangles which were hit [(Nhit,3) float]
|
||||||
|
All returned values are None if not hit occured.
|
||||||
|
'''
|
||||||
|
E1 = B-A
|
||||||
|
E2 = C-A
|
||||||
|
N = np.cross(E1,E2)
|
||||||
|
det = -(dR*N).sum(axis=-1) # dot product
|
||||||
|
det[np.abs(det)<1e-6] = np.nan # mask to avoid numpy runtime errors
|
||||||
|
invdet = 1.0/det
|
||||||
|
AO = R-A
|
||||||
|
DAO = np.cross(AO,dR)
|
||||||
|
# u,v,1-u-v are the barycentric coordinates of intersection
|
||||||
|
u = (E2*DAO).sum(axis=-1)*invdet
|
||||||
|
v = -(E1*DAO).sum(axis=-1)*invdet
|
||||||
|
# Boolean array indicating hits
|
||||||
|
is_hit = np.logical_and(
|
||||||
|
np.logical_and(
|
||||||
|
np.logical_and(
|
||||||
|
np.isfinite(det),u>=0.0),
|
||||||
|
v>=0.0),
|
||||||
|
(u+v)<=1.0)
|
||||||
|
hit_idx = np.flatnonzero(is_hit)
|
||||||
|
if len(hit_idx)==0: return (None,None,None)
|
||||||
|
# Intersection point is R+t*dR
|
||||||
|
t = (AO[hit_idx,:]*N[hit_idx,:]).sum(axis=-1)*invdet[hit_idx]
|
||||||
|
return hit_idx,t,N[hit_idx]
|
||||||
|
|
||||||
def clean_points(self,report=False):
|
def clean_points(self,report=False):
|
||||||
nfaces_ = self._faces.shape[0]
|
nfaces_ = self._faces.shape[0]
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue