debugged
This commit is contained in:
parent
2b1d859a7e
commit
d485e40ec4
|
|
@ -25,8 +25,9 @@ class ibmppp:
|
|||
# Declare variables which hold fields
|
||||
self.field = {'u': None, 'v': None, 'w': None, 'p': None, 's1': None}
|
||||
# Declare variables which hold statistics
|
||||
self.spatialMean = {'u': None, 'v': None, 'w': None, 'p': None, 's1': None}
|
||||
self.spatialMsqr = {'u': None, 'v': None, 'w': None, 'p': None, 's1': None}
|
||||
self.spatialMean = {'u': None, 'v': None, 'w': None, 'p': None, 's1': None}
|
||||
self.spatialMsqr = {'u': None, 'v': None, 'w': None, 'p': None, 's1': None}
|
||||
self.spatialNsample = {'u': None, 'v': None, 'w': None, 'p': None, 's1': None}
|
||||
# Declare variables for grid (to be set by "loadGrid()")
|
||||
self.grid = {'u': [None,None,None], 'v':[None,None,None], 'w': [None,None,None], 'p': [None,None,None], 's1': [None,None,None]}
|
||||
self.domainBounds = (None,None,None,None,None,None)
|
||||
|
|
@ -598,10 +599,13 @@ class ibmppp:
|
|||
gid = fid.create_group('/'+key)
|
||||
did = gid.create_dataset('mean',data=self.spatialMean[key].ravel('C'))
|
||||
did.attrs['F_CONTIGUOUS'] = 0
|
||||
did.attrs['DIM'] = spatialMean[key].shape
|
||||
did.attrs['DIM'] = self.spatialMean[key].shape
|
||||
did = gid.create_dataset('meansquare',data=self.spatialMsqr[key].ravel('C'))
|
||||
did.attrs['F_CONTIGUOUS'] = 0
|
||||
did.attrs['DIM'] = spatialMsqr[key].shape
|
||||
did.attrs['DIM'] = self.spatialMsqr[key].shape
|
||||
did = gid.create_dataset('nsample',data=self.spatialNsample[key].ravel('C'))
|
||||
did.attrs['F_CONTIGUOUS'] = 0
|
||||
did.attrs['DIM'] = self.spatialNsample[key].shape
|
||||
# Close the file
|
||||
fid.close()
|
||||
|
||||
|
|
@ -930,8 +934,11 @@ class ibmppp:
|
|||
if collocate:
|
||||
self.shiftField(keyout,self.__getShiftDirection(keyout,'p'))
|
||||
|
||||
def spatialStatistics(self,key,homogeneous=(self.__xperiodic,self.__yperiodic,self.__zperiodic)):
|
||||
def spatialStatistics(self,key,homogeneous=None):
|
||||
'''Computes spatial mean and meansquare over homogeneous directions.'''
|
||||
# If no homogeneous directions are provided, use periodicity
|
||||
if homogeneous is None:
|
||||
homogeneous = (self.__xperiodic,self.__yperiodic,self.__zperiodic)
|
||||
# Check if there is any homogeneous direction
|
||||
if not np.any(homogeneous):
|
||||
raise ValueError('Cannot compute statistics, since there is no homogeneous direction.')
|
||||
|
|
@ -949,32 +956,43 @@ class ibmppp:
|
|||
tmpsum = np.nansum(tmpsum,axis=idir,keepdims=True)
|
||||
tmpssq = np.nansum(tmpssq,axis=idir,keepdims=True)
|
||||
# Reduce the statistics to processors with col/row/pln=0 in homogeneous directions
|
||||
proc_layout = np.array(range(0,self.__nproc)).reshape(self.__nxp,self.__nyp,self.__nzp)
|
||||
for idir in range(0,3):
|
||||
if homogeneous[idir]:
|
||||
pos_dst = [self.__icol,self.__jrow,self.__kpln]
|
||||
pos_dst[idir] = 0
|
||||
rank_dst = self.__rankFromPosition(pos_dst[0],pos_dst[1],pos_dst[2],self.__nxp,self.__nyp,self.__nzp)
|
||||
# Create groups for collective communication: get rank of all procs in current direction
|
||||
proc_slice = [slice(self.__icol,self.__icol+1),slice(self.__jrow,self.__jrow+1),slice(self.__kpln,self.__kpln+1)]
|
||||
proc_slice[idir] = slice(0,None)
|
||||
rank_list = proc_layout[proc_slice[0],proc_slice[1],proc_slice[2]].ravel()
|
||||
comm = self.__comm.Create(MPI.Group.Incl(self.__comm.Get_group(),rank_list))
|
||||
rank = comm.Get_rank()
|
||||
# Communicate counter
|
||||
if self.__rank==rank_dst:
|
||||
#print('Receiving rank',self.__rank,'is known in this comminucator as',rank,'for idir =',idir)
|
||||
recvbuf = np.zeros_like(counter)
|
||||
else:
|
||||
recvbuf = counter
|
||||
self.__comm.Reduce(counter,recvbuf,op=MPI.SUM,root=rank_dst)
|
||||
#print(self.__rank,'Reduce 1: destination',rank_dst,pos_dst)
|
||||
comm.Reduce(counter,recvbuf,op=MPI.SUM,root=0)
|
||||
counter = recvbuf
|
||||
# Communicate tmpsum
|
||||
if self.__rank==rank_dst:
|
||||
recvbuf = np.zeros_like(tmpsum)
|
||||
else:
|
||||
recvbuf = tmpsum
|
||||
self.__comm.Reduce(tmpsum,recvbuf,op=MPI.SUM,root=rank_dst)
|
||||
#print(self.__rank,'Reduce 2')
|
||||
comm.Reduce(tmpsum,recvbuf,op=MPI.SUM,root=0)
|
||||
tmpsum = recvbuf
|
||||
# Communicate tmpssq
|
||||
if self.__rank==rank_dst:
|
||||
recvbuf = np.zeros_like(tmpssq)
|
||||
else:
|
||||
recvbuf = tmpssq
|
||||
self.__comm.Reduce(tmpssq,recvbuf,op=MPI.SUM,root=rank_dst)
|
||||
comm.Reduce(tmpssq,recvbuf,op=MPI.SUM,root=0)
|
||||
tmpssq = recvbuf
|
||||
comm.Free()
|
||||
# All processors with col/row/pln!=0 in homogeneous direction are done.
|
||||
pos = [self.__icol,self.__jrow,self.__kpln]
|
||||
for idir in range(0,3):
|
||||
|
|
@ -984,18 +1002,17 @@ class ibmppp:
|
|||
# the full line or plane. Rank 0 allocates the final array
|
||||
if self.__rank==0:
|
||||
# Determine size of final array
|
||||
nxg = self.__procGrid[key][1][-1]-self.__procGrid[key][0][0]
|
||||
nyg = self.__procGrid[key][3][-1]-self.__procGrid[key][2][0]
|
||||
nzg = self.__procGrid[key][5][-1]-self.__procGrid[key][4][0]
|
||||
nxg = self.__procGrid[key][1][-1]-self.__procGrid[key][0][0]+1
|
||||
nyg = self.__procGrid[key][3][-1]-self.__procGrid[key][2][0]+1
|
||||
nzg = self.__procGrid[key][5][-1]-self.__procGrid[key][4][0]+1
|
||||
dim = [nxg,nyg,nzg]
|
||||
for idir in range(0,3):
|
||||
if homogeneous[idir]:
|
||||
dim[idir] = 1
|
||||
# Allocate a nice spot of memory
|
||||
self.spatialMean[key] = np.zeros(dim,dtype=self.__precision)
|
||||
self.spatialMsqr[key] = np.zeros(dim,dtype=self.__precision)
|
||||
# Also allocate one helper array
|
||||
counter_full = np.zeros(dim,dtype=counter.dtype)
|
||||
self.spatialMean[key] = np.zeros(dim,dtype=self.__precision)
|
||||
self.spatialMsqr[key] = np.zeros(dim,dtype=self.__precision)
|
||||
self.spatialNsample[key] = np.zeros(dim,dtype='i')
|
||||
# Create iterators for receive request
|
||||
ipend = 0 if homogeneous[0] else self.__nxp-1
|
||||
jpend = 0 if homogeneous[1] else self.__nyp-1
|
||||
|
|
@ -1017,21 +1034,24 @@ class ibmppp:
|
|||
if rank_src==0:
|
||||
recvbuf = counter
|
||||
else:
|
||||
recvbuf = self.__comm.Recv(source=rank_src,tag=1)
|
||||
counter_full[ib:ie+1,jb:je+1,kb:ke+1] = recvbuf
|
||||
recvbuf = np.empty_like(counter)
|
||||
self.__comm.Recv(recvbuf,source=rank_src,tag=1)
|
||||
self.spatialNsample[key][ib:ie+1,jb:je+1,kb:ke+1] = recvbuf
|
||||
if rank_src==0:
|
||||
recvbuf = tmpsum
|
||||
else:
|
||||
recvbuf = self.__comm.Recv(source=rank_src,tag=2)
|
||||
recvbuf = np.empty_like(tmpsum)
|
||||
self.__comm.Recv(recvbuf,source=rank_src,tag=2)
|
||||
self.spatialMean[key][ib:ie+1,jb:je+1,kb:ke+1] = recvbuf
|
||||
if rank_src==0:
|
||||
recvbuf = tmpssq
|
||||
else:
|
||||
recvbuf = self.__comm.Recv(source=rank_src,tag=3)
|
||||
recvbuf = np.empty_like(tmpssq)
|
||||
self.__comm.Recv(recvbuf,source=rank_src,tag=3)
|
||||
self.spatialMsqr[key][ib:ie+1,jb:je+1,kb:ke+1] = recvbuf
|
||||
# Rank 0 got all the data now. Finalize it!
|
||||
self.spatialMean[key] /= counter_full
|
||||
self.spatialMsqr[key] /= counter_full
|
||||
self.spatialMean[key] /= self.spatialNsample[key]
|
||||
self.spatialMsqr[key] /= self.spatialNsample[key]
|
||||
else:
|
||||
# All tanks but rank 0 send their data
|
||||
self.__comm.Send(counter,dest=0,tag=1)
|
||||
|
|
|
|||
Loading…
Reference in New Issue