1003 lines
47 KiB
Python
1003 lines
47 KiB
Python
import numpy as np
|
|
class Field3d:
|
|
def __init__(self,data,origin,spacing,deep=False):
|
|
assert len(origin)==3, "'origin' must be of length 3"
|
|
assert len(spacing)==3, "'spacing' must be of length 3"
|
|
assert isinstance(data,np.ndarray), "'data' must be numpy.ndarray."
|
|
if deep:
|
|
self.data = data.copy()
|
|
else:
|
|
self.data = data
|
|
self.origin = tuple([float(x) for x in origin])
|
|
self.spacing = tuple([float(x) for x in spacing])
|
|
self.eps_collapse = 1e-8
|
|
self._dim = None
|
|
return
|
|
|
|
def __str__(self):
|
|
str = 'Field3d with\n'
|
|
str+= ' dimension: {}, {}, {}\n'.format(*self.dim())
|
|
str+= ' origin: {:G}, {:G}, {:G}\n'.format(*self.origin)
|
|
str+= ' spacing: {:G}, {:G}, {:G}\n'.format(*self.spacing)
|
|
str+= ' datatype: {}'.format(self.dtype())
|
|
return str
|
|
|
|
def __add__(self,other):
|
|
if isinstance(other,Field3d):
|
|
assert self.has_same_grid(other), "Grid mismatch."
|
|
return Field3d(self.data+other.data,self.origin,self.spacing)
|
|
else:
|
|
return Field3d(self.data+other,self.origin,self.spacing)
|
|
|
|
def __sub__(self,other):
|
|
if isinstance(other,Field3d):
|
|
assert self.has_same_grid(other), "Grid mismatch."
|
|
return Field3d(self.data-other.data,self.origin,self.spacing)
|
|
else:
|
|
return Field3d(self.data-other,self.origin,self.spacing)
|
|
|
|
def __mul__(self,other):
|
|
if isinstance(other,Field3d):
|
|
assert self.has_same_grid(other), "Grid mismatch."
|
|
return Field3d(self.data*other.data,self.origin,self.spacing)
|
|
else:
|
|
return Field3d(self.data*other,self.origin,self.spacing)
|
|
|
|
def __truediv__(self,other):
|
|
if isinstance(other,Field3d):
|
|
assert self.has_same_grid(other), "Grid mismatch."
|
|
return Field3d(self.data/other.data,self.origin,self.spacing)
|
|
else:
|
|
return Field3d(self.data/other,self.origin,self.spacing)
|
|
|
|
def __radd__(self,other):
|
|
return Field3d(other+self.data,self.origin,self.spacing)
|
|
|
|
def __rmul__(self,other):
|
|
return Field3d(other*self.data,self.origin,self.spacing)
|
|
|
|
def __pow__(self,other):
|
|
return Field3d(self.data**other,self.origin,self.spacing)
|
|
|
|
def __iadd__(self,other):
|
|
if isinstance(other,Field3d):
|
|
assert self.has_same_grid(other), "Grid mismatch."
|
|
self.data += other.data
|
|
else:
|
|
self.data += other
|
|
return self
|
|
|
|
def __isub__(self,other):
|
|
if isinstance(other,Field3d):
|
|
assert self.has_same_grid(other), "Grid mismatch."
|
|
self.data -= other.data
|
|
else:
|
|
self.data -= other
|
|
return self
|
|
|
|
def __imul__(self,other):
|
|
if isinstance(other,Field3d):
|
|
assert self.has_same_grid(other), "Grid mismatch."
|
|
self.data *= other.data
|
|
else:
|
|
self.data *= other
|
|
return self
|
|
|
|
def __itruediv__(self,other):
|
|
if isinstance(other,Field3d):
|
|
assert self.has_same_grid(other), "Grid mismatch."
|
|
self.data /= other.data
|
|
else:
|
|
self.data /= other
|
|
return self
|
|
|
|
# TBD: this should return another Field3d object
|
|
# def __getitem__(self,val):
|
|
# assert isinstance(val,tuple) and len(val)==3, "Field3d must be indexed by [ii,jj,kk]."
|
|
# sl = []
|
|
# for x in val:
|
|
# if isinstance(x,int):
|
|
# lo,hi = x,x+1
|
|
# hi = hi if hi!=0 else None
|
|
# sl.append(slice(lo,hi))
|
|
# elif isinstance(x,slice):
|
|
# sl.append(x)
|
|
# else:
|
|
# raise TypeError("Trajectories can only be sliced by slice objects or integers.")
|
|
# return self.data[sl[0],sl[1],sl[2]]
|
|
|
|
@classmethod
|
|
def from_chunk(cls,chunk,gridg):
|
|
'''Initialize Field3d from chunk data and global grid.'''
|
|
xg,yg,zg = gridg
|
|
ib,jb,kb = chunk['ibeg']-1, chunk['jbeg']-1, chunk['kbeg']-1
|
|
dx,dy,dz = xg[1]-xg[0], yg[1]-yg[0], zg[1]-zg[0]
|
|
xo,yo,zo = xg[ib]-chunk['ighost']*dx, yg[jb]-chunk['ighost']*dy, zg[kb]-chunk['ighost']*dz
|
|
nx,ny,nz = chunk['data'].shape
|
|
assert (chunk['nxl']+2*chunk['ighost'])==nx, "Invalid chunk data: nxl != chunk['data'].shape[0]"
|
|
assert (chunk['nyl']+2*chunk['ighost'])==ny, "Invalid chunk data: nyl != chunk['data'].shape[1]"
|
|
assert (chunk['nzl']+2*chunk['ighost'])==nz, "Invalid chunk data: nzl != chunk['data'].shape[2]"
|
|
return cls(chunk['data'],origin=(xo,yo,zo),spacing=(dx,dy,dz))
|
|
|
|
@classmethod
|
|
def from_file(cls,file,name='Field3d'):
|
|
import h5py
|
|
is_open = isinstance(file,(h5py.File,h5py.Group))
|
|
f = file if is_open else h5py.File(file,'r')
|
|
g = f[name]
|
|
origin = tuple(g['origin'])
|
|
spacing = tuple(g['spacing'])
|
|
data = g['data'][:]
|
|
if not is_open: f.close()
|
|
return cls(data,origin,spacing)
|
|
|
|
@classmethod
|
|
def allocate(cls,dim,origin,spacing,fill=None,dtype=np.float64):
|
|
'''Allocates an empty field, or a field filled with 'fill'.'''
|
|
assert isinstance(dim,(tuple,list,np.ndarray)) and len(dim)==3,\
|
|
"'dim' must be a tuple/list of length 3."
|
|
assert isinstance(origin,(tuple,list,np.ndarray)) and len(origin)==3,\
|
|
"'origin' must be a tuple/list of length 3."
|
|
assert isinstance(spacing,(tuple,list,np.ndarray)) and len(spacing)==3,\
|
|
"'spacing' must be a tuple/list of length 3."
|
|
if fill is None:
|
|
data = np.empty(dim,dtype=dtype)
|
|
else:
|
|
data = np.full(dim,fill,dtype=dtype)
|
|
return cls(data,origin,spacing)
|
|
|
|
@classmethod
|
|
def pseudo_field(cls,dim,origin,spacing):
|
|
'''Creates a Field3d instance without allocating any memory.'''
|
|
assert isinstance(dim,(tuple,list,np.ndarray)) and len(dim)==3,\
|
|
"'dim' must be a tuple/list of length 3."
|
|
assert isinstance(origin,(tuple,list,np.ndarray)) and len(origin)==3,\
|
|
"'origin' must be a tuple/list of length 3."
|
|
assert isinstance(spacing,(tuple,list,np.ndarray)) and len(spacing)==3,\
|
|
"'spacing' must be a tuple/list of length 3."
|
|
data = np.empty((0,0,0))
|
|
r = cls(data,origin,spacing)
|
|
r._dim = dim
|
|
return r
|
|
|
|
def save(self,file,name='Field3d',truncate=False):
|
|
import h5py
|
|
is_open = isinstance(file,(h5py.File,h5py.Group))
|
|
flag = 'w' if truncate else 'a'
|
|
f = file if is_open else h5py.File(file,flag)
|
|
g = f.create_group(name)
|
|
g.create_dataset('origin',data=self.origin)
|
|
g.create_dataset('spacing',data=self.spacing)
|
|
g.create_dataset('data',data=self.data)
|
|
if not is_open: f.close()
|
|
return
|
|
|
|
def copy(self):
|
|
return Field3d(self.data.copy(),self.origin,self.spacing)
|
|
|
|
def pseudo_copy(self):
|
|
return self.pseudo_field(self.dim(),self.origin,self.spacing)
|
|
|
|
def insert_subfield(self,subfield):
|
|
assert all([abs(subfield.spacing[ii]-self.spacing[ii])<self.eps_collapse
|
|
for ii in range(3)]), "spacing differs. Got {}, have {}".format(subfield.spacing,self.spacing)
|
|
assert all([self.distance_to_nearest_gridpoint(subfield.origin[ii],axis=ii)<self.eps_collapse
|
|
for ii in range(3)]), "subfield has shifted origin."
|
|
assert all(self.is_within_bounds(subfield.origin,axis=None)), "subfield origin is out-of-bounds."
|
|
assert all(self.is_within_bounds(subfield.endpoint(),axis=None)), "subfield endpoint is out-of-bounds."
|
|
#ib,jb,kb = [int(round((subfield.origin[ii]-self.origin[ii])/self.spacing[ii])) for ii in range(3)]
|
|
ib,jb,kb = self.nearest_gridpoint(subfield.origin,axis=None)
|
|
nx,ny,nz = subfield.dim()
|
|
self.data[ib:ib+nx,jb:jb+ny,kb:kb+nz] = subfield.data[:,:,:]
|
|
return
|
|
|
|
def extract_subfield(self,idx_origin,dim,stride=(1,1,1),deep=False,strict_bounds=True):
|
|
if strict_bounds:
|
|
assert all(idx_origin[ii]>=0 and idx_origin[ii]<self.dim(axis=ii) for ii in range(3)),\
|
|
"'origin' is out-of-bounds."
|
|
assert all(idx_origin[ii]+stride[ii]*(dim[ii]-1)<self.dim(axis=ii) for ii in range(3)),\
|
|
"endpoint is out-of-bounds."
|
|
else:
|
|
for ii in range(3):
|
|
if idx_origin[ii]<0:
|
|
dim[ii] += idx_origin[ii]
|
|
idx_origin[ii] = 0
|
|
if idx_origin[ii]+stride[ii]*(dim[ii]-1)>=self.dim(axis=ii):
|
|
dim[ii] = (self.dim(axis=ii)-idx_origin[ii])//stride[ii]
|
|
if dim[ii]<=0:
|
|
return None
|
|
sl = tuple(slice(idx_origin[ii],
|
|
idx_origin[ii]+stride[ii]*dim[ii],
|
|
stride[ii]) for ii in range(3))
|
|
origin = self.coordinate(idx_origin)
|
|
spacing = tuple(self.spacing[ii]*stride[ii] for ii in range(3))
|
|
data = self.data[sl]
|
|
return Field3d(data,origin,spacing,deep=deep)
|
|
|
|
def clip(self,position,axis,invert=False,deep=False,is_relative=False):
|
|
'''Extracts a subfield by clipping with a plane with normal pointing
|
|
direction specified by 'axis'.'''
|
|
if is_relative:
|
|
coord = self.origin[axis] + coord*self.dim(axis=axis)*self.spacing[axis]
|
|
idx_clip = self.nearest_gridpoint(coord,axis=axis,lower=True)
|
|
sl = 3*[slice(None)]
|
|
origin_ = self.origin
|
|
spacing_ = self.spacing
|
|
if invert:
|
|
sl[axis] = slice(idx_clip+1,None)
|
|
origin_[axis] = self.origin[axis]+idx_clip*self.spacing[axis]
|
|
else:
|
|
sl[axis] = slice(0,idx_clip+1)
|
|
data_ = self.data[tuple(sl)]
|
|
return Field3d(data_,origin_,spacing_,deep=deep)
|
|
|
|
def clip_box(self,bounds,deep=False,is_relative=False):
|
|
'''Extracts a subfield by clipping with a box.'''
|
|
if is_relative:
|
|
bounds = tuple(self.origin[ii//2] + bounds[ii]*self.dim(ii//2)*self.spacing[ii//2] for ii in range(6))
|
|
idx_lo = self.nearest_gridpoint((bounds[0],bounds[2],bounds[4]),lower=True)
|
|
idx_hi = self.nearest_gridpoint((bounds[1],bounds[3],bounds[5]),lower=True)
|
|
idx_lo = tuple(0 if idx_lo[axis]<0 else idx_lo[axis] for axis in range(3))
|
|
idx_hi = tuple(0 if idx_hi[axis]<0 else idx_hi[axis] for axis in range(3))
|
|
sl_ = tuple([slice(idx_lo[0],idx_hi[0]+1),
|
|
slice(idx_lo[1],idx_hi[1]+1),
|
|
slice(idx_lo[2],idx_hi[2]+1)])
|
|
origin_ = tuple(self.origin[axis]+idx_lo[axis]*self.spacing[axis] for axis in range(3))
|
|
spacing_ = self.spacing
|
|
data_ = self.data[sl_]
|
|
return Field3d(data_,origin_,spacing_,deep=deep)
|
|
|
|
def threshold(self,val,invert=False):
|
|
'''Returns a binary array indicating which grid points are above,
|
|
or in case of invert=True below, a given threshold.'''
|
|
if invert:
|
|
return self.data<val
|
|
else:
|
|
return self.data>=val
|
|
|
|
def coordinate(self,idx,axis=None):
|
|
if axis is None:
|
|
assert len(idx)==3, "If 'axis' is None, 'idx' must be a tuple/list of length 3."
|
|
return tuple(self.coordinate(idx[ii],axis=ii) for ii in range(3))
|
|
assert axis<3, "'axis' must be one of 0,1,2."
|
|
assert idx<self.dim(axis=axis), "'idx' is out-of-bounds."
|
|
return self.origin[axis]+idx*self.spacing[axis]
|
|
|
|
def grid(self,axis=None):
|
|
if axis is None:
|
|
return tuple(self.grid(axis=ii) for ii in range(3))
|
|
assert axis<3, "'axis' must be one of 0,1,2."
|
|
return self.origin[axis]+np.arange(0,self.dim(axis=axis))*self.spacing[axis]
|
|
def x(self): return self.grid(axis=0)
|
|
def y(self): return self.grid(axis=1)
|
|
def z(self): return self.grid(axis=2)
|
|
|
|
def nearest_gridpoint(self,coord,axis=None,lower=False):
|
|
if axis is None:
|
|
assert len(coord)==3, "If 'axis' is None, 'coord' must be a tuple/list of length 3."
|
|
return tuple(self.nearest_gridpoint(coord[ii],axis=ii,lower=lower) for ii in range(3))
|
|
assert axis<3, "'axis' must be one of 0,1,2."
|
|
if lower:
|
|
return np.floor((coord+self.eps_collapse-self.origin[axis])/self.spacing[axis]).astype('int')
|
|
else:
|
|
return np.round((coord-self.origin[axis])/self.spacing[axis]).astype('int')
|
|
|
|
def distance_to_nearest_gridpoint(self,coord,axis=None,lower=False):
|
|
if axis is None:
|
|
assert len(coord)==3, "If 'axis' is None, 'coord' must be a tuple/list of length 3."
|
|
return tuple(self.distance_to_nearest_gridpoint(coord[ii],axis=ii,lower=lower) for ii in range(3))
|
|
assert axis<3, "'axis' must be one of 0,1,2."
|
|
val = np.remainder(coord+self.eps_collapse-self.origin[axis],self.spacing[axis])-self.eps_collapse
|
|
if not lower and val>0.5*self.spacing[axis]:
|
|
val = self.spacing[axis]-val
|
|
return val
|
|
|
|
def is_within_bounds(self,coord,axis=None):
|
|
if axis is None:
|
|
assert len(coord)==3, "If 'axis' is None, 'coord' must be a tuple/list of length 3."
|
|
return tuple(self.is_within_bounds(coord[ii],axis=ii) for ii in range(3))
|
|
assert axis<3, "'axis' must be one of 0,1,2."
|
|
idx_nearest = self.nearest_gridpoint(coord,axis=axis)
|
|
if idx_nearest>0 and idx_nearest<self.dim(axis=axis)-1:
|
|
return True
|
|
dist_nearest = self.distance_to_nearest_gridpoint(coord,axis=axis)
|
|
if (idx_nearest==0 or idx_nearest==self.dim(axis=axis)-1) and abs(dist_nearest)<self.eps_collapse:
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def has_same_grid(self,other):
|
|
if not self.has_same_origin(other): return False
|
|
if not self.has_same_spacing(other): return False
|
|
if not self.has_same_origin(other): return False
|
|
return True
|
|
|
|
def has_same_origin(self,other,axis=None):
|
|
if axis is None:
|
|
return all([self.has_same_origin(other,axis=ii) for ii in range(3)])
|
|
origin = other.origin if isinstance(other,Field3d) else other
|
|
return abs(origin[axis]-self.origin[axis])<self.eps_collapse
|
|
|
|
def has_same_spacing(self,other,axis=None):
|
|
if axis is None:
|
|
return all([self.has_same_spacing(other,axis=ii) for ii in range(3)])
|
|
spacing = other.spacing if isinstance(other,Field3d) else other
|
|
return abs(spacing[axis]-self.spacing[axis])<self.eps_collapse
|
|
|
|
def has_same_dim(self,other,axis=None):
|
|
if axis is None:
|
|
return all([self.has_same_dim(other,axis=ii) for ii in range(3)])
|
|
dim = other.dim(axis=axis) if isinstance(other,Field3d) else other
|
|
return dim==self.dim(axis=axis)
|
|
|
|
def dim(self,axis=None):
|
|
if axis is None:
|
|
return tuple(self.dim(axis=ii) for ii in range(3))
|
|
assert axis<3, "'axis' must be one of 0,1,2."
|
|
if self._dim is not None:
|
|
return self._dim[axis]
|
|
else:
|
|
return self.data.shape[axis]
|
|
|
|
def endpoint(self,axis=None):
|
|
if axis is None:
|
|
return tuple(self.endpoint(axis=ii) for ii in range(3))
|
|
assert axis<3, "'axis' must be one of 0,1,2."
|
|
return self.origin[axis]+(self.dim(axis=axis)-1)*self.spacing[axis]
|
|
|
|
def dtype(self):
|
|
return self.data.dtype
|
|
|
|
def convert_dtype(self,dtype):
|
|
self.data = self.data.astype(dtype,copy=False)
|
|
return
|
|
|
|
def derivative(self,axis,only_keep_interior=False,shift_origin='before'):
|
|
'''Computes derivative wrt to direction 'axis' with 2nd order finite differences
|
|
centered between the origin grid points'''
|
|
from scipy import ndimage
|
|
assert axis<3, "'axis' must be one of 0,1,2."
|
|
origin = list(self.origin)
|
|
assert shift_origin in ('before','after'), "'shift_origin' must be one of {'before','after'}."
|
|
if shift_origin=='left':
|
|
corr_orig = 0
|
|
origin[axis] -= 0.5*self.spacing[axis]
|
|
else:
|
|
corr_orig = -1
|
|
origin[axis] += 0.5*self.spacing[axis]
|
|
data = ndimage.correlate1d(self.data,np.array([-1.,1.])/self.spacing[axis],axis=axis,
|
|
mode='constant',cval=np.nan,origin=corr_orig)
|
|
if only_keep_interior:
|
|
sl = 3*[slice(None)]
|
|
if shift_origin=='before':
|
|
sl[axis] = slice(-1,None)
|
|
origin[axis] += self.spacing[axis]
|
|
else:
|
|
sl[axis] = slice(0,-1)
|
|
data = data[tuple(sl)]
|
|
return Field3d(data,origin,self.spacing)
|
|
|
|
def gradient(self,axis,preserve_origin=False,only_keep_interior=False,add_border='before'):
|
|
return [self.derivative(axis,preserve_origin=preserve_origin,
|
|
only_keep_interior=only_keep_interior,add_border=add_border) for axis in range(0,3)]
|
|
|
|
def laplacian(self,only_keep_interior=False):
|
|
'''Computes the Laplacian of a field.'''
|
|
from scipy import ndimage
|
|
data = ndimage.correlate1d(self.data,np.array([1.,-2.,1.])/self.spacing[0]**2,axis=0,mode='constant',cval=np.nan,origin=0)
|
|
data += ndimage.correlate1d(self.data,np.array([1.,-2.,1.])/self.spacing[1]**2,axis=1,mode='constant',cval=np.nan,origin=0)
|
|
data += ndimage.correlate1d(self.data,np.array([1.,-2.,1.])/self.spacing[2]**2,axis=2,mode='constant',cval=np.nan,origin=0)
|
|
origin = list(self.origin)
|
|
if only_keep_interior:
|
|
data = data[1:-1,1:-1,1:-1]
|
|
for axis in range(3):
|
|
origin[axis] = origin[axis]+self.spacing[axis]
|
|
return Field3d(data,origin,self.spacing)
|
|
|
|
def integral(self,integrate_axis,average=False,ignore_nan=False,return_weights=False,ufunc=None):
|
|
'''Computes the integral or average along a given axis applying the
|
|
function 'ufunc' to each node.'''
|
|
assert isinstance(integrate_axis,(list,tuple,np.ndarray)) and len(integrate_axis)==3,\
|
|
"'integrate_axis' must be a tuple/list of length 3."
|
|
assert all([isinstance(integrate_axis[ii],(bool,int)) for ii in range(3)]),\
|
|
"'integrate_axis' requires bool values."
|
|
assert any(integrate_axis), "'integrate_axis' must contain at least one True."
|
|
axes = []
|
|
weight = 1.0
|
|
for axis in range(3):
|
|
if integrate_axis[axis]:
|
|
axes.append(axis)
|
|
if average:
|
|
weight *= self.dim(axis=axis)
|
|
else:
|
|
weight *= self.spacing[axis]
|
|
axes = tuple(axes)
|
|
if ignore_nan:
|
|
if average:
|
|
weight = np.sum(~np.isnan(self.data),axis=axes,keepdims=True)
|
|
func_sum = np.nansum
|
|
else:
|
|
func_sum = np.sum
|
|
if ufunc is None:
|
|
out = func_sum(self.data,axis=axes,keepdims=True)
|
|
else:
|
|
assert isinstance(ufunc,np.ufunc), "'ufunc' needs to be a numpy ufunc. "\
|
|
"Check out https://numpy.org/doc/stable/reference/ufuncs.html for reference."
|
|
assert ufunc.nin==1, "Only ufunc with single input argument are supported for now."
|
|
out = func_sum(ufunc(self.data),axis=axes,keepdims=True)
|
|
if return_weights:
|
|
return (out,weight)
|
|
else:
|
|
return out/weight
|
|
|
|
def gaussian_filter(self,sigma,truncate=4.0,only_keep_interior=False):
|
|
'''Applies a gaussian filter: sigma is standard deviation for Gaussian kernel for each axis.'''
|
|
from scipy import ndimage
|
|
assert isinstance(sigma,(tuple,list,np.ndarray)) and len(sigma)==3,\
|
|
"'sigma' must be a tuple/list of length 3"
|
|
# Convert sigma from simulation length scales to grid points as required by ndimage
|
|
sigma_img = tuple(sigma[ii]/self.spacing[ii] for ii in range(3))
|
|
data = ndimage.gaussian_filter(self.data,sigma_img,truncate=truncate,mode='constant',cval=np.nan)
|
|
origin = list(self.origin)
|
|
if only_keep_interior:
|
|
r = self.gaussian_filter_radius(sigma,truncate=truncate)
|
|
data = data[r[0]:-r[0],r[1]:-r[1],r[2]:-r[2]]
|
|
for axis in range(3):
|
|
origin[axis] = origin[axis]+r[axis]*self.spacing[axis]
|
|
return Field3d(data,origin,self.spacing)
|
|
|
|
def gaussian_filter_radius(self,sigma,truncate=4.0):
|
|
'''Radius of Gaussian filter. Stencil width is 2*radius+1.'''
|
|
assert isinstance(sigma,(tuple,list,np.ndarray)) and len(sigma)==3,\
|
|
"'sigma' must be a tuple/list of length 3"
|
|
# Convert sigma from simulation length scales to grid points as required by ndimage
|
|
sigma_img = tuple(sigma[ii]/self.spacing[ii] for ii in range(3))
|
|
radius = []
|
|
for ii in range(3):
|
|
radius.append(int(truncate*sigma_img[ii]+0.5))
|
|
return tuple(radius)
|
|
|
|
def shift_origin(self,rel_shift,only_keep_interior=False):
|
|
'''Shifts the origin of a field by multiple of spacing.'''
|
|
from scipy import ndimage
|
|
assert isinstance(rel_shift,(tuple,list,np.ndarray)) and len(rel_shift)==3,\
|
|
"'shift' must be tuple/list with length 3."
|
|
assert all([rel_shift[ii]>=-1.0-self.eps_collapse and rel_shift[ii]<=1.0+self.eps_collapse for ii in range(3)]),\
|
|
"'shift' must be in (-1.0,1.0). {}".format(rel_shift)
|
|
data = self.data.copy()
|
|
origin = list(self.origin)
|
|
sl = 3*[slice(None)]
|
|
for axis in range(3):
|
|
if abs(rel_shift[axis])<self.eps_collapse:
|
|
continue
|
|
elif rel_shift[axis]>0:
|
|
w = rel_shift[axis] if rel_shift[axis]<=1.0 else 1.0
|
|
weights = (1.0-w,w)
|
|
data = ndimage.correlate1d(data,weights,axis=axis,mode='constant',cval=np.nan,origin=-1)
|
|
origin[axis] += w*self.spacing[axis]
|
|
if only_keep_interior:
|
|
sl[axis] = slice(0,-1)
|
|
else:
|
|
w = rel_shift[axis] if rel_shift[axis]>=-1.0 else -1.0
|
|
weights = (-w,1.0+w)
|
|
data = ndimage.correlate1d(data,weights,axis=axis,mode='constant',cval=np.nan,origin=0)
|
|
origin[axis] += w*self.spacing[axis]
|
|
if only_keep_interior:
|
|
sl[axis] = slice(1,None)
|
|
origin[axis] += self.spacing[axis]
|
|
if only_keep_interior:
|
|
data = data[sl]
|
|
return Field3d(data,origin,self.spacing)
|
|
|
|
def relative_shift(self,field):
|
|
'''Compute the relative shift (in terms of spacing) to shift self onto field.'''
|
|
assert self.has_same_spacing(field), "spacing differs."
|
|
rel_shift = [0.0,0.0,0.0]
|
|
for axis in range(3):
|
|
dist = field.origin[axis]-self.origin[axis]
|
|
if abs(dist)>self.eps_collapse:
|
|
rel_shift[axis] = dist/self.spacing[axis]
|
|
return tuple(rel_shift)
|
|
|
|
def change_grid(self,origin,spacing,dim,padding=None,numpad=1):
|
|
assert all([origin[ii]>=self.origin[ii] for ii in range(0,3)]), "New origin is out of bounds."
|
|
endpoint = [origin[ii]+(dim[ii]-1)*spacing[ii] for ii in range(0,3)]
|
|
assert all([endpoint[ii]<=self.endpoint(ii) for ii in range(0,3)]), "New end point is out of bounds."
|
|
# Allocate (possibly padded array)
|
|
origin_pad,dim_pad,sl_out = padding(origin,spacing,dim,padding,numpad)
|
|
data = np.zeros(dim_pad,dtype=self.data.dtype)
|
|
# Trilinear interpolation
|
|
if np.allclose(spacing,self.spacing):
|
|
# spacing is the same: we can construct universal weights for the stencil
|
|
i0,j0,k0 = self.nearest_gridpoint(origin,axis=None,lower=True)
|
|
cx,cy,cz = [self.distance_to_nearest_gridpoint(origin[ii],axis=ii,lower=True)/self.spacing[ii]
|
|
for ii in range(3)]
|
|
c = self.weights_trilinear((cx,cy,cz))
|
|
for ii in range(0,2):
|
|
for jj in range(0,2):
|
|
for kk in range(0,2):
|
|
if c[ii,jj,kk]>self.eps_collapse:
|
|
data[sl_out] += c[ii,jj,kk]*self.data[
|
|
i0+ii:i0+ii+dim[0],
|
|
j0+jj:j0+jj+dim[1],
|
|
k0+kk:k0+kk+dim[2]]
|
|
else:
|
|
data_ref = data[sl_out]
|
|
for ii in range(0,dim[0]):
|
|
for jj in range(0,dim[1]):
|
|
for kk in range(0,dim[2]):
|
|
coord = (
|
|
origin[0]+ii*spacing[0],
|
|
origin[1]+jj*spacing[1],
|
|
origin[2]+kk*spacing[2])
|
|
data_ref[ii,jj,kk] = self.interpolate(coord)
|
|
return Field3d(data,origin_pad,spacing)
|
|
|
|
def interpolate(self,coord):
|
|
assert all([coord[ii]>=self.origin[ii] for ii in range(0,3)]), "'coord' is out of bounds."
|
|
assert all([coord[ii]<=self.endpoint(ii) for ii in range(0,3)]), "'coord' is out of bounds."
|
|
i0,j0,k0 = self.nearest_gridpoint(coord,axis=None,lower=True)
|
|
cx,cy,cz = [self.distance_to_nearest_gridpoint(coord[ii],axis=ii,lower=True)/self.spacing[ii]
|
|
for ii in range(3)]
|
|
c = self.weights_trilinear((cx,cy,cz))
|
|
val = 0.0
|
|
for ii in range(0,2):
|
|
for jj in range(0,2):
|
|
for kk in range(0,2):
|
|
if c[ii,jj,kk]>self.eps_collapse:
|
|
val += c[ii,jj,kk]*self.data[i0+ii,j0+jj,k0+kk]
|
|
return val
|
|
|
|
@staticmethod
|
|
def padding(origin,spacing,dim,padding,numpad):
|
|
if isinstance(numpad,int):
|
|
numpad = np.fill(3,numpad,dtype=int)
|
|
else:
|
|
numpad = np.array(numpad,dtype=int)
|
|
assert len(numpad)==3, "'numpad' must be either an integer or tuple/list of length 3."
|
|
origin_pad = np.array(origin)
|
|
dim_pad = np.array(dim)
|
|
sl_out = [slice(None),slice(None),slice(None)]
|
|
if padding is not None:
|
|
if padding=='before':
|
|
dim_pad += numpad
|
|
origin_pad -= numpad*spacing
|
|
for axis in range(3):
|
|
sl_out[axis] = slice(numpad[axis],None)
|
|
elif padding=='after':
|
|
dim_pad += numpad
|
|
for axis in range(3):
|
|
sl_out[axis] = slice(0,-numpad[axis])
|
|
elif padding=='both':
|
|
dim_pad += 2*numpad
|
|
origin_pad -= numpad*spacing
|
|
for axis in range(3):
|
|
sl_out[axis] = slice(numpad[axis],-numpad[axis])
|
|
else:
|
|
raise ValueError("'padding' must either be None or one of {'before','after','both'}.")
|
|
sl_out = tuple(sl_out)
|
|
origin_pad = tuple(origin_pad)
|
|
dim_pad = tuple(dim_pad)
|
|
return (origin_pad,dim_pad,sl_out)
|
|
|
|
def weights_trilinear(self,rel_dist):
|
|
assert len(rel_dist)==3, "len(rel_dist) must be 3."
|
|
cx,cy,cz = rel_dist
|
|
if cx<0.0 and cx>-self.eps_collapse: cx=0.0
|
|
if cy<0.0 and cy>-self.eps_collapse: cy=0.0
|
|
if cz<0.0 and cz>-self.eps_collapse: cz=0.0
|
|
if cx>1.0 and cx<1.0+self.eps_collapse: cx=1.0
|
|
if cy>1.0 and cy<1.0+self.eps_collapse: cy=1.0
|
|
if cz>1.0 and cz<1.0+self.eps_collapse: cz=1.0
|
|
assert cx>=0.0 and cy>=0.0 and cz>=0.0, "'rel_dist' must be >=0"
|
|
assert cx<=1.0 and cy<=1.0 and cz<=1.0, "'rel_dist' must be <=1"
|
|
c = np.zeros((2,2,2))
|
|
c[0,0,0] = 1.0-(cx+cy+cz)+(cx*cy+cx*cz+cy*cz)-(cx*cy*cz)
|
|
c[1,0,0] = cx-(cx*cy+cx*cz)+(cx*cy*cz)
|
|
c[0,1,0] = cy-(cx*cy+cy*cz)+(cx*cy*cz)
|
|
c[0,0,1] = cz-(cx*cz+cy*cz)+(cx*cy*cz)
|
|
c[1,1,0] = (cx*cy)-(cx*cy*cz)
|
|
c[1,0,1] = (cx*cz)-(cx*cy*cz)
|
|
c[0,1,1] = (cy*cz)-(cx*cy*cz)
|
|
c[1,1,1] = (cx*cy*cz)
|
|
return c
|
|
|
|
def set_writable(self,flag):
|
|
self.data.setflags(write=flag)
|
|
return
|
|
|
|
def to_vtk(self,deep=False):
|
|
import pyvista as pv
|
|
mesh = pv.UniformGrid()
|
|
mesh.dimensions = self.dim(axis=None)
|
|
mesh.origin = self.origin
|
|
mesh.spacing = self.spacing
|
|
# order needs to be F no matter how array is stored in memory
|
|
if deep:
|
|
mesh.point_arrays['data'] = self.data.flatten(order='F')
|
|
else:
|
|
mesh.point_arrays['data'] = self.data.ravel(order='F')
|
|
return mesh
|
|
|
|
def vtk_contour(self,val,deep=False,method='contour'):
|
|
if not isinstance(val,(tuple,list)):
|
|
val = [val]
|
|
return self.to_vtk(deep=deep).contour(val,method=method)
|
|
|
|
def vtk_slice(self,normal,origin,deep=False):
|
|
assert (normal in ('x','y','z') or (isinstance(normal,(tuple,list))
|
|
and len(normal)==3)), "'normal' must be 'x','y','z' or tuple of length 3."
|
|
assert isinstance(origin,(tuple,list)) and len(origin)==3,\
|
|
"'origin' must be tuple of length 3."
|
|
return self.to_vtk(deep=deep).slice(normal=normal,origin=origin)
|
|
|
|
def gaussian_filter_umean_channel(array,spacing,sigma,truncate=4.0):
|
|
'''Applies a Gaussian filter to a numpy array of dimension (1,ny,1) which
|
|
contains the mean streamwise velocity of the channel (or possibly sth else).
|
|
Since yu[0] = c and yu[-1] = d, we can use scipy's mirror settings and don't
|
|
need ghost cells.'''
|
|
from scipy import ndimage
|
|
assert array.ndim==3, "Expected an array with three dimensions/axes."
|
|
assert array.shape[0]==1 and array.shape[1]>1 and array.shape[2]==1,\
|
|
"Expected an array with shape (1,ny,1)."
|
|
sigma_img = sigma/spacing
|
|
array = ndimage.gaussian_filter1d(array,sigma_img,axis=1,truncate=truncate,mode='mirror')
|
|
return array
|
|
|
|
|
|
|
|
class BinaryFieldNd:
|
|
def __init__(self,input):
|
|
assert isinstance(input,np.ndarray) and input.dtype==np.dtype('bool'),\
|
|
"'input' must be a numpy array of dtype('bool')."
|
|
self.data = input
|
|
self._dim = input.shape
|
|
self._ndim = input.ndim
|
|
self.labels = None
|
|
self.nlabels = 0
|
|
self.wrap = tuple(self._ndim*[None])
|
|
self._featsl = None
|
|
self.set_structure(False)
|
|
self.set_periodicity(self._ndim*[False])
|
|
|
|
def set_periodicity(self,periodicity):
|
|
assert all([isinstance(x,(bool,int)) for x in periodicity]),\
|
|
"'periodicity' requires bool values."
|
|
assert len(periodicity)==self._ndim,\
|
|
"Number of entries in 'periodicity' must match dimension of binary field."
|
|
self.periodicity = tuple(bool(x) for x in periodicity)
|
|
return
|
|
|
|
def set_structure(self,connect_diagonals):
|
|
from scipy import ndimage
|
|
if connect_diagonals:
|
|
self.structure = ndimage.generate_binary_structure(self._ndim,self._ndim)
|
|
else:
|
|
self.structure = ndimage.generate_binary_structure(self._ndim,1)
|
|
|
|
def enable_diagonal_connections(self): self.set_structure(True)
|
|
|
|
def disable_diagonal_connections(self): self.set_structure(False)
|
|
|
|
def label(self):
|
|
'''Labels connected regions in binary fields.'''
|
|
from scipy import ndimage
|
|
if any(self.periodicity):
|
|
self.labels,self.nlabels,self.wrap = self._labels_periodic()
|
|
else:
|
|
self.labels,self.nlabels = ndimage.label(self.data,structure=self.structure)
|
|
self._featsl = ndimage.find_objects(self.labels)
|
|
|
|
def _labels_periodic(self,map_to_zero=False):
|
|
'''Label features in an array while taking into account periodic wrapping.
|
|
If map_to_zero=True, every feature which overlaps or is attached to the
|
|
periodic boundary will be removed.'''
|
|
from scipy import ndimage
|
|
# Pad input data
|
|
if map_to_zero:
|
|
pw = tuple((1,1) if x else (0,0) for x in self.periodicity)
|
|
sl_pad = tuple(slice(1,-1) if x else slice(None) for x in self.periodicity)
|
|
else:
|
|
pw = tuple((0,1) if x else (0,0) for x in self.periodicity)
|
|
sl_pad = tuple(slice(0,-1) if x else slice(None) for x in self.periodicity)
|
|
data_ = np.pad(self.data,pw,mode='wrap')
|
|
# Compute labels on padded array
|
|
labels_,nlabels_ = ndimage.label(data_,structure=self.structure)
|
|
# Get a mapping of labels which differ at periodic overlap
|
|
map_ = np.array(range(nlabels_+1),dtype=labels_.dtype)
|
|
wrap_ = self._ndim*[None]
|
|
for axis in range(self._ndim):
|
|
if not self.periodicity[axis]: continue
|
|
if map_to_zero:
|
|
sl_lo = tuple(slice(0,2) if ii==axis else slice(None) for ii in range(self._ndim))
|
|
sl_hi = tuple(slice(-2,None) if ii==axis else slice(None) for ii in range(self._ndim))
|
|
lab_lo = labels_[sl_lo]
|
|
lab_hi = labels_[sl_hi]
|
|
li = (lab_lo!=lab_hi)
|
|
for source_ in np.unique(lab_lo[li]):
|
|
map_[source_] = 0
|
|
for source_ in np.unique(lab_hi[li]):
|
|
map_[source_] = 0
|
|
else:
|
|
sl_lo = tuple(slice(0,1) if ii==axis else slice(None) for ii in range(self._ndim))
|
|
sl_hi = tuple(slice(-1,None) if ii==axis else slice(None) for ii in range(self._ndim))
|
|
sl_pre = tuple(slice(-2,-1) if ii==axis else slice(None) for ii in range(self._ndim))
|
|
lab_lo = labels_[sl_lo]
|
|
lab_hi = labels_[sl_hi]
|
|
lab_pre = np.unique(labels_[sl_pre]) # all labels in last (unwrapped) slice
|
|
# Initialize array to keep track of wrapping
|
|
wrap_[axis] = np.zeros(nlabels_+1,dtype=bool)
|
|
# Determine new label and map
|
|
lab_new = np.minimum(lab_lo,lab_hi)
|
|
for lab_ in [lab_lo,lab_hi]:
|
|
li = (lab_!=lab_new)
|
|
lab_li = lab_[li]
|
|
lab_new_li = lab_new[li]
|
|
for idx_ in np.unique(lab_li,return_index=True)[1]:
|
|
source_ = lab_li[idx_] # the label to be changed
|
|
target_ = lab_new_li[idx_] # the label which will be newly assigned
|
|
while target_ != map_[target_]: # map it recursively
|
|
target_ = map_[target_]
|
|
map_[source_] = target_
|
|
if source_ in lab_pre: # check if source is not a ghost
|
|
wrap_[axis][target_] = True
|
|
# Remove gaps from target mapping
|
|
idx_,map_ = np.unique(map_,return_index=True,return_inverse=True)[1:3]
|
|
# Relabel and remove padding
|
|
labels_ = map_[labels_[sl_pad]]
|
|
nlabels_ = np.max(map_)
|
|
assert nlabels_==len(idx_)-1, "DEBUG assertion"
|
|
for axis in range(self._ndim):
|
|
if wrap_[axis] is not None:
|
|
wrap_[axis] = wrap_[axis][idx_]
|
|
return labels_,nlabels_,tuple(wrap_)
|
|
|
|
def fill_holes(self):
|
|
'''Fill the holes in binary objects while taking into account periodicity.
|
|
In the non-periodic sense, a hole is a region of zeros which does not connect
|
|
to a boundary. In the periodic sense, a hole is a region of zeros which is not
|
|
connected to itself accross the periodic boundaries.'''
|
|
from scipy import ndimage
|
|
# Reimplementation of "binary_fill_holes" from ndimage
|
|
mask = np.logical_not(self.data) # only modify locations which are "False" at the moment
|
|
tmp = np.zeros(mask.shape,bool) # create empty array to "grow from boundaries"
|
|
ndimage.binary_dilation(tmp,structure=None,iterations=-1,
|
|
mask=mask,output=self.data,border_value=1,
|
|
origin=0) # everything connected to the boundary is now True in self.data
|
|
# Remove holes which overlap the boundaries
|
|
if any(self.periodicity):
|
|
self.data = self._labels_periodic(map_to_zero=True)[0]>0
|
|
# Invert to get the final result
|
|
np.logical_not(self.data,self.data)
|
|
# If labels have been computed already, recompute them to stay consistent
|
|
if self.labels is not None:
|
|
self.label()
|
|
|
|
def probe(self,idx):
|
|
'''Returns whether or not a point at idx is True or False.'''
|
|
return self.data[tuple(idx)]
|
|
|
|
def volume(self):
|
|
'''Returns the sum of True values.'''
|
|
return np.sum(self.data)
|
|
|
|
def volume_feature(self,label=None):
|
|
'''Returns volume of features, i.e. connected regions which have been
|
|
labeled using the label() method. If 'label' is None all volumes
|
|
are returned including the volume of the background region. The array
|
|
is sorted by labels, i.e. vol[0] is the volume of the background region,
|
|
vol[1] the volume of label 1, etc. If 'label' is an integer value, only
|
|
the volume of the corresponding region is returned.
|
|
Note: it is more efficient to retrieve all volumes at once than querying
|
|
single labels.'''
|
|
if self.labels is None:
|
|
self.label()
|
|
if label is None:
|
|
return np.bincount(self.labels.ravel())
|
|
# TBD: compare performance with
|
|
# sizes = ndimage.sum(mask, label_im, range(nb_labels + 1))
|
|
# http://scipy-lectures.org/advanced/image_processing/auto_examples/plot_find_object.html
|
|
else:
|
|
return np.sum(self.labels==label)
|
|
|
|
def volume_domain(self):
|
|
'''Returns volume of entire domain. Should be equal to sum(volume_feature()).'''
|
|
return np.prod(self._dim)
|
|
|
|
def feature_labels_by_volume(self,descending=True):
|
|
'''Returns labels of connected regions sorted by volume.'''
|
|
labels = np.argsort(self.volume_feature()[1:])+1
|
|
if descending: labels = labels[::-1]
|
|
return labels
|
|
|
|
def discard_feature(self,selection):
|
|
'''Removes a feature from data.'''
|
|
if self.labels is None:
|
|
self.label()
|
|
selection = self._select_feature(selection)
|
|
# Map tagged regions to zero in order to discard them
|
|
map_ = np.array(range(self.nlabels+1),dtype=self.labels.dtype)
|
|
map_[selection] = 0
|
|
# Remove gaps from target mapping
|
|
idx_,map_ = np.unique(map_,return_index=True,return_inverse=True)[1:3]
|
|
# Discard regions
|
|
self.labels = map_[self.labels]
|
|
self.nlabels = np.max(map_)
|
|
for axis in range(self._ndim):
|
|
if self.wrap[axis] is not None:
|
|
self.wrap[axis] = self.wrap[axis][idx_]
|
|
self.data = self.labels>0
|
|
|
|
def isolate_feature(self,selection,array=None):
|
|
from scipy import ndimage
|
|
if self.labels is None:
|
|
self.label()
|
|
selection = self._select_feature(selection)
|
|
output1 = []
|
|
has_array = array is not None
|
|
if has_array:
|
|
assert np.all(array.shape==self._dim)
|
|
output2 = []
|
|
for lab_ in selection:
|
|
# Extract feature of interest
|
|
if lab_==0:
|
|
data_ = np.logical_not(self.data)
|
|
if has_array: data2_ = array
|
|
else:
|
|
data_ = (self.labels[self._featsl[lab_-1]]==lab_)
|
|
if has_array: data2_ = array[self._featsl[lab_-1]]
|
|
# If feature is wrapped periodically, duplicate it and extract
|
|
# largest one
|
|
iswrapped = False
|
|
rep_ = self._ndim*[1]
|
|
for axis in range(self._ndim):
|
|
if self.wrap[axis] is not None and self.wrap[axis][lab_]:
|
|
rep_[axis] = 2
|
|
iswrapped = True
|
|
if iswrapped:
|
|
data_ = np.tile(data_,rep_)
|
|
l_,nl_ = ndimage.label(data_,structure=self.structure)
|
|
vol_ = np.bincount(l_.ravel())
|
|
il_ = np.argmax(vol_[1:])+1
|
|
sl_ = ndimage.find_objects(l_==il_)[0]
|
|
print(sl_)
|
|
data_ = data_[sl_]
|
|
if has_array:
|
|
data2_ = np.tile(data2_,rep_)[sl_]
|
|
# Add to output
|
|
output1.append(data_)
|
|
if has_array: output2.append(data2_)
|
|
if has_array:
|
|
return (output1,output2)
|
|
else:
|
|
return output1
|
|
|
|
def triangulate_feature(self,selection,origin=(0,0,0),spacing=(1,1,1),array=None):
|
|
assert self._ndim==3, "Triangulation requires 3D data."
|
|
from scipy import ndimage
|
|
if self.labels is None:
|
|
self.label()
|
|
selection = self._select_feature(selection)
|
|
output = []
|
|
pw = tuple((1,1) for ii in range(self._ndim))
|
|
has_array = array is not None
|
|
if has_array:
|
|
assert np.all(array.shape==self._dim)
|
|
output2 = []
|
|
for lab_ in selection:
|
|
if has_array:
|
|
data_,scal_ = self.isolate_feature(lab_,array=array)
|
|
data_,scal_ = data_[0],scal_[0]
|
|
# Fill interior in case we filled holes which is not in scal_
|
|
li = ndimage.binary_erosion(data_,structure=self.structure,iterations=2)
|
|
scal_[li] = 1.0
|
|
li = np.logical_not(ndimage.binary_dilation(data_,structure=self.structure,iterations=2))
|
|
scal_[li] = -1.0
|
|
# scal_ = np.pad(scal_,pw,mode='reflect',reflect_type='odd')
|
|
scal_ = np.pad(scal_,pw,mode='constant',constant_values=-1.0)
|
|
pd = Field3d(scal_,origin,spacing).vtk_contour(0.0)
|
|
else:
|
|
data_ = self.isolate_feature(lab_)[0]
|
|
data_ = np.pad(data_.astype(float),pw,mode='constant',constant_values=-1.0)
|
|
pd = Field3d(data_,origin,spacing).vtk_contour(0.5)
|
|
output.append(pd)
|
|
return output
|
|
|
|
def _select_feature(self,selection):
|
|
dtype = self.labels.dtype
|
|
if selection is None:
|
|
return np.array(range(1,self.nlabels+1))
|
|
elif np.issubdtype(type(selection),np.integer):
|
|
return np.array(selection,dtype=dtype,ndmin=1)
|
|
elif isinstance(selection,(list,tuple,np.ndarray)):
|
|
selection = np.array(selection)
|
|
if selection.dtype==np.dtype('bool'):
|
|
assert selection.ndim==1 and selection.shape[0]==self.nlabels+1,\
|
|
"Boolean indexing must provide count+1 values."
|
|
else:
|
|
selection = selection.astype(dtype)
|
|
assert np.max(selection)<=self.nlabels and np.min(selection)>=0,\
|
|
"Entry in selection is out-of-bounds."
|
|
return selection
|
|
else:
|
|
raise ValueError('Invalid input. Accepting int,list,tuple,ndarray.')
|
|
|
|
@staticmethod
|
|
def surface_voxel_structure(id):
|
|
'''Get structure element and all its permutations for surface voxels
|
|
as defined by
|
|
Mullikin, J. C., & Verbeek, P. W. (1993). Surface area estimation of digitized planes. Bioimaging, 1(1), 6-16.
|
|
Also returns weights, where S7-S9 are defined in
|
|
Windreich, G., Kiryati, N., & Lohmann, G. (2003). Voxel-based surface area estimation: from theory to practice. Pattern Recognition, 36(11), 2531-2541.
|
|
'''
|
|
if id==1:
|
|
S = np.array([[[ True, True, True], [ True, True, True], [ True, True, True]],[[ True, True, True], [ True, True, True], [ True, True, True]],[[False,False,False], [False,False,False], [False,False,False]]])
|
|
W = 0.894
|
|
elif id==2:
|
|
S = np.array([[[ True, True, True], [ True, True, True], [ True, True, True]],[[ True, True,False], [ True, True,False], [ True, True,False]],[[ True,False,False], [ True,False,False], [ True,False,False]]])
|
|
W = 1.3409
|
|
elif id==3:
|
|
S = np.array([[[ True, True, True], [ True, True,False], [ True,False,False]],[[ True, True,False], [ True, True,False], [False,False,False]],[[ True,False,False], [False,False,False], [False,False,False]]])
|
|
W = 1.5879
|
|
elif id==4:
|
|
S = np.array([[[ True, True, True], [ True, True, True], [ True, True, True]],[[False, True,False], [False, True,False], [False, True,False]],[[False,False,False], [False,False,False], [False,False,False]]])
|
|
W = 2.0
|
|
elif id==5:
|
|
S = np.array([[[ True,False,False], [False,False,False], [False,False,False]],[[ True, True,False], [ True, True,False], [False,False,False]],[[ True,False,False], [False,False,False], [False,False,False]]])
|
|
W = 8./3.
|
|
elif id==6:
|
|
S = np.array([[[False,False,False], [ True,False,False], [False,False,False]],[[False,False,False], [ True, True,False], [False,False,False]],[[False,False,False], [ True,False,False], [False,False,False]]])
|
|
W = 10./3.
|
|
elif id==7:
|
|
S = np.array([[[False,False,False], [False,False,False], [False,False,False]],[[ True, True, True], [ True, True, True], [ True, True, True]],[[False,False,False], [False,False,False], [False,False,False]]])
|
|
W = 1.79
|
|
elif id==8:
|
|
S = np.array([[[False,False,False], [False,False,False], [False,False,False]],[[False,False,False], [ True, True, True], [False,False,False]],[[False,False,False], [False,False,False], [False,False,False]]])
|
|
W = 2.68
|
|
elif id==9:
|
|
S = np.array([[[False,False,False], [False,False,False], [False,False,False]],[[False,False,False], [False, True,False], [False,False,False]],[[False,False,False], [False,False,False], [False,False,False]]])
|
|
W = 4.08
|
|
return (np.unique(BinaryFieldNd.rotations48(S).reshape(-1,3,3,3),axis=0),W)
|
|
|
|
@staticmethod
|
|
def rotations48(a):
|
|
'''Generates all possible permutations for numpy array.
|
|
Code taken from
|
|
https://stackoverflow.com/questions/33190042/how-to-calculate-all-24-rotations-of-3d-array
|
|
'''
|
|
import itertools
|
|
# Get all combinations of axes that are permutable
|
|
n = a.ndim
|
|
axcomb = np.array(list(itertools.permutations(range(n), n)))
|
|
# Initialize output array
|
|
out = np.zeros((6,2,2,2,) + a.shape,dtype=a.dtype)
|
|
# Run loop through all axes for flipping and permuting each axis
|
|
for i,ax in enumerate(axcomb):
|
|
for j,fx in enumerate([1,-1]):
|
|
for k,fy in enumerate([1,-1]):
|
|
for l,fz in enumerate([1,-1]):
|
|
out[i,j,k,l] = np.transpose(a[::fx,::fy,::fz],ax)
|
|
return out
|
|
|
|
class ChunkIterator:
|
|
'''Iterates through all chunks. 'snapshot' must be an instance
|
|
of a class which returns a Field3d from the method call
|
|
snapshot.field_chunk(rank,key,keep_ghost=keep_ghost).
|
|
One example implementation is UCFSnapshot from suspendtools.ucf.'''
|
|
def __init__(self,snapshot,key,keep_ghost=True):
|
|
self.snapshot = snapshot
|
|
self.key = key
|
|
self.keep_ghost = keep_ghost
|
|
self.iter_rank = 0
|
|
def __iter__(self):
|
|
self.iter_rank = 0
|
|
return self
|
|
def __next__(self):
|
|
if self.iter_rank<self.snapshot.nproc():
|
|
field = self.snapshot.field_chunk(
|
|
self.iter_rank,self.key,keep_ghost=self.keep_ghost)
|
|
self.iter_rank += 1
|
|
return field
|
|
else:
|
|
raise StopIteration
|