import numpy as np class Field3d: def __init__(self,data,origin,spacing,deep=False): assert len(origin)==3, "'origin' must be of length 3" assert len(spacing)==3, "'spacing' must be of length 3" assert isinstance(data,np.ndarray), "'data' must be numpy.ndarray." if deep: self.data = data.copy() else: self.data = data self.origin = tuple([float(x) for x in origin]) self.spacing = tuple([float(x) for x in spacing]) self.eps_collapse = 1e-8 self._dim = None return def __str__(self): str = 'Field3d with\n' str+= ' dimension: {}, {}, {}\n'.format(*self.dim()) str+= ' origin: {:G}, {:G}, {:G}\n'.format(*self.origin) str+= ' spacing: {:G}, {:G}, {:G}\n'.format(*self.spacing) str+= ' datatype: {}'.format(self.dtype()) return str def __add__(self,other): if isinstance(other,Field3d): assert self.has_same_grid(other), "Grid mismatch." return Field3d(self.data+other.data,self.origin,self.spacing) else: return Field3d(self.data+other,self.origin,self.spacing) def __sub__(self,other): if isinstance(other,Field3d): assert self.has_same_grid(other), "Grid mismatch." return Field3d(self.data-other.data,self.origin,self.spacing) else: return Field3d(self.data-other,self.origin,self.spacing) def __mul__(self,other): if isinstance(other,Field3d): assert self.has_same_grid(other), "Grid mismatch." return Field3d(self.data*other.data,self.origin,self.spacing) else: return Field3d(self.data*other,self.origin,self.spacing) def __truediv__(self,other): if isinstance(other,Field3d): assert self.has_same_grid(other), "Grid mismatch." return Field3d(self.data/other.data,self.origin,self.spacing) else: return Field3d(self.data/other,self.origin,self.spacing) def __radd__(self,other): return Field3d(other+self.data,self.origin,self.spacing) def __rmul__(self,other): return Field3d(other*self.data,self.origin,self.spacing) def __pow__(self,other): return Field3d(self.data**other,self.origin,self.spacing) def __iadd__(self,other): if isinstance(other,Field3d): assert self.has_same_grid(other), "Grid mismatch." self.data += other.data else: self.data += other return self def __isub__(self,other): if isinstance(other,Field3d): assert self.has_same_grid(other), "Grid mismatch." self.data -= other.data else: self.data -= other return self def __imul__(self,other): if isinstance(other,Field3d): assert self.has_same_grid(other), "Grid mismatch." self.data *= other.data else: self.data *= other return self def __itruediv__(self,other): if isinstance(other,Field3d): assert self.has_same_grid(other), "Grid mismatch." self.data /= other.data else: self.data /= other return self # TBD: this should return another Field3d object # def __getitem__(self,val): # assert isinstance(val,tuple) and len(val)==3, "Field3d must be indexed by [ii,jj,kk]." # sl = [] # for x in val: # if isinstance(x,int): # lo,hi = x,x+1 # hi = hi if hi!=0 else None # sl.append(slice(lo,hi)) # elif isinstance(x,slice): # sl.append(x) # else: # raise TypeError("Trajectories can only be sliced by slice objects or integers.") # return self.data[sl[0],sl[1],sl[2]] @classmethod def from_chunk(cls,chunk,gridg): '''Initialize Field3d from chunk data and global grid.''' xg,yg,zg = gridg ib,jb,kb = chunk['ibeg']-1, chunk['jbeg']-1, chunk['kbeg']-1 dx,dy,dz = xg[1]-xg[0], yg[1]-yg[0], zg[1]-zg[0] xo,yo,zo = xg[ib]-chunk['ighost']*dx, yg[jb]-chunk['ighost']*dy, zg[kb]-chunk['ighost']*dz nx,ny,nz = chunk['data'].shape assert (chunk['nxl']+2*chunk['ighost'])==nx, "Invalid chunk data: nxl != chunk['data'].shape[0]" assert (chunk['nyl']+2*chunk['ighost'])==ny, "Invalid chunk data: nyl != chunk['data'].shape[1]" assert (chunk['nzl']+2*chunk['ighost'])==nz, "Invalid chunk data: nzl != chunk['data'].shape[2]" return cls(chunk['data'],origin=(xo,yo,zo),spacing=(dx,dy,dz)) @classmethod def from_file(cls,file,name='Field3d'): import h5py is_open = isinstance(file,(h5py.File,h5py.Group)) f = file if is_open else h5py.File(file,'r') g = f[name] origin = tuple(g['origin']) spacing = tuple(g['spacing']) data = g['data'][:] if not is_open: f.close() return cls(data,origin,spacing) @classmethod def allocate(cls,dim,origin,spacing,fill=None,dtype=np.float64): '''Allocates an empty field, or a field filled with 'fill'.''' assert isinstance(dim,(tuple,list,np.ndarray)) and len(dim)==3,\ "'dim' must be a tuple/list of length 3." assert isinstance(origin,(tuple,list,np.ndarray)) and len(origin)==3,\ "'origin' must be a tuple/list of length 3." assert isinstance(spacing,(tuple,list,np.ndarray)) and len(spacing)==3,\ "'spacing' must be a tuple/list of length 3." if fill is None: data = np.empty(dim,dtype=dtype) else: data = np.full(dim,fill,dtype=dtype) return cls(data,origin,spacing) @classmethod def pseudo_field(cls,dim,origin,spacing): '''Creates a Field3d instance without allocating any memory.''' assert isinstance(dim,(tuple,list,np.ndarray)) and len(dim)==3,\ "'dim' must be a tuple/list of length 3." assert isinstance(origin,(tuple,list,np.ndarray)) and len(origin)==3,\ "'origin' must be a tuple/list of length 3." assert isinstance(spacing,(tuple,list,np.ndarray)) and len(spacing)==3,\ "'spacing' must be a tuple/list of length 3." data = np.empty((0,0,0)) r = cls(data,origin,spacing) r._dim = dim return r def save(self,file,name='Field3d',truncate=False): import h5py is_open = isinstance(file,(h5py.File,h5py.Group)) flag = 'w' if truncate else 'a' f = file if is_open else h5py.File(file,flag) g = f.create_group(name) g.create_dataset('origin',data=self.origin) g.create_dataset('spacing',data=self.spacing) g.create_dataset('data',data=self.data) if not is_open: f.close() return def copy(self): return Field3d(self.data.copy(),self.origin,self.spacing) def pseudo_copy(self): return self.pseudo_field(self.dim(),self.origin,self.spacing) def insert_subfield(self,subfield): assert all([abs(subfield.spacing[ii]-self.spacing[ii])=0 and idx_origin[ii]=self.dim(axis=ii): dim[ii] = (self.dim(axis=ii)-idx_origin[ii])//stride[ii] if dim[ii]<=0: return None sl = tuple(slice(idx_origin[ii], idx_origin[ii]+stride[ii]*dim[ii], stride[ii]) for ii in range(3)) origin = self.coordinate(idx_origin) spacing = tuple(self.spacing[ii]*stride[ii] for ii in range(3)) data = self.data[sl] return Field3d(data,origin,spacing,deep=deep) def clip(self,position,axis,invert=False,deep=False,is_relative=False): '''Extracts a subfield by clipping with a plane with normal pointing direction specified by 'axis'.''' if is_relative: coord = self.origin[axis] + coord*self.dim(axis=axis)*self.spacing[axis] idx_clip = self.nearest_gridpoint(coord,axis=axis,lower=True) sl = 3*[slice(None)] origin_ = self.origin spacing_ = self.spacing if invert: sl[axis] = slice(idx_clip+1,None) origin_[axis] = self.origin[axis]+idx_clip*self.spacing[axis] else: sl[axis] = slice(0,idx_clip+1) data_ = self.data[tuple(sl)] return Field3d(data_,origin_,spacing_,deep=deep) def clip_box(self,bounds,deep=False,is_relative=False): '''Extracts a subfield by clipping with a box.''' if is_relative: bounds = tuple(self.origin[ii//2] + bounds[ii]*self.dim(ii//2)*self.spacing[ii//2] for ii in range(6)) idx_lo = self.nearest_gridpoint((bounds[0],bounds[2],bounds[4]),lower=True) idx_hi = self.nearest_gridpoint((bounds[1],bounds[3],bounds[5]),lower=True) idx_lo = tuple(0 if idx_lo[axis]<0 else idx_lo[axis] for axis in range(3)) idx_hi = tuple(0 if idx_hi[axis]<0 else idx_hi[axis] for axis in range(3)) sl_ = tuple([slice(idx_lo[0],idx_hi[0]+1), slice(idx_lo[1],idx_hi[1]+1), slice(idx_lo[2],idx_hi[2]+1)]) origin_ = tuple(self.origin[axis]+idx_lo[axis]*self.spacing[axis] for axis in range(3)) spacing_ = self.spacing data_ = self.data[sl_] return Field3d(data_,origin_,spacing_,deep=deep) def threshold(self,val,invert=False): '''Returns a binary array indicating which grid points are above, or in case of invert=True below, a given threshold.''' if invert: return self.data=val def coordinate(self,idx,axis=None): if axis is None: assert len(idx)==3, "If 'axis' is None, 'idx' must be a tuple/list of length 3." return tuple(self.coordinate(idx[ii],axis=ii) for ii in range(3)) assert axis<3, "'axis' must be one of 0,1,2." assert idx0.5*self.spacing[axis]: val = self.spacing[axis]-val return val def is_within_bounds(self,coord,axis=None): if axis is None: assert len(coord)==3, "If 'axis' is None, 'coord' must be a tuple/list of length 3." return tuple(self.is_within_bounds(coord[ii],axis=ii) for ii in range(3)) assert axis<3, "'axis' must be one of 0,1,2." idx_nearest = self.nearest_gridpoint(coord,axis=axis) if idx_nearest>0 and idx_nearest=-1.0-self.eps_collapse and rel_shift[ii]<=1.0+self.eps_collapse for ii in range(3)]),\ "'shift' must be in (-1.0,1.0). {}".format(rel_shift) data = self.data.copy() origin = list(self.origin) sl = 3*[slice(None)] for axis in range(3): if abs(rel_shift[axis])0: w = rel_shift[axis] if rel_shift[axis]<=1.0 else 1.0 weights = (1.0-w,w) data = ndimage.correlate1d(data,weights,axis=axis,mode='constant',cval=np.nan,origin=-1) origin[axis] += w*self.spacing[axis] if only_keep_interior: sl[axis] = slice(0,-1) else: w = rel_shift[axis] if rel_shift[axis]>=-1.0 else -1.0 weights = (-w,1.0+w) data = ndimage.correlate1d(data,weights,axis=axis,mode='constant',cval=np.nan,origin=0) origin[axis] += w*self.spacing[axis] if only_keep_interior: sl[axis] = slice(1,None) origin[axis] += self.spacing[axis] if only_keep_interior: data = data[sl] return Field3d(data,origin,self.spacing) def relative_shift(self,field): '''Compute the relative shift (in terms of spacing) to shift self onto field.''' assert self.has_same_spacing(field), "spacing differs." rel_shift = [0.0,0.0,0.0] for axis in range(3): dist = field.origin[axis]-self.origin[axis] if abs(dist)>self.eps_collapse: rel_shift[axis] = dist/self.spacing[axis] return tuple(rel_shift) def change_grid(self,origin,spacing,dim,padding=None,numpad=1): assert all([origin[ii]>=self.origin[ii] for ii in range(0,3)]), "New origin is out of bounds." endpoint = [origin[ii]+(dim[ii]-1)*spacing[ii] for ii in range(0,3)] assert all([endpoint[ii]<=self.endpoint(ii) for ii in range(0,3)]), "New end point is out of bounds." # Allocate (possibly padded array) origin_pad,dim_pad,sl_out = padding(origin,spacing,dim,padding,numpad) data = np.zeros(dim_pad,dtype=self.data.dtype) # Trilinear interpolation if np.allclose(spacing,self.spacing): # spacing is the same: we can construct universal weights for the stencil i0,j0,k0 = self.nearest_gridpoint(origin,axis=None,lower=True) cx,cy,cz = [self.distance_to_nearest_gridpoint(origin[ii],axis=ii,lower=True)/self.spacing[ii] for ii in range(3)] c = self.weights_trilinear((cx,cy,cz)) for ii in range(0,2): for jj in range(0,2): for kk in range(0,2): if c[ii,jj,kk]>self.eps_collapse: data[sl_out] += c[ii,jj,kk]*self.data[ i0+ii:i0+ii+dim[0], j0+jj:j0+jj+dim[1], k0+kk:k0+kk+dim[2]] else: data_ref = data[sl_out] for ii in range(0,dim[0]): for jj in range(0,dim[1]): for kk in range(0,dim[2]): coord = ( origin[0]+ii*spacing[0], origin[1]+jj*spacing[1], origin[2]+kk*spacing[2]) data_ref[ii,jj,kk] = self.interpolate(coord) return Field3d(data,origin_pad,spacing) def interpolate(self,coord): assert all([coord[ii]>=self.origin[ii] for ii in range(0,3)]), "'coord' is out of bounds." assert all([coord[ii]<=self.endpoint(ii) for ii in range(0,3)]), "'coord' is out of bounds." i0,j0,k0 = self.nearest_gridpoint(coord,axis=None,lower=True) cx,cy,cz = [self.distance_to_nearest_gridpoint(coord[ii],axis=ii,lower=True)/self.spacing[ii] for ii in range(3)] c = self.weights_trilinear((cx,cy,cz)) val = 0.0 for ii in range(0,2): for jj in range(0,2): for kk in range(0,2): if c[ii,jj,kk]>self.eps_collapse: val += c[ii,jj,kk]*self.data[i0+ii,j0+jj,k0+kk] return val @staticmethod def padding(origin,spacing,dim,padding,numpad): if isinstance(numpad,int): numpad = np.fill(3,numpad,dtype=int) else: numpad = np.array(numpad,dtype=int) assert len(numpad)==3, "'numpad' must be either an integer or tuple/list of length 3." origin_pad = np.array(origin) dim_pad = np.array(dim) sl_out = [slice(None),slice(None),slice(None)] if padding is not None: if padding=='before': dim_pad += numpad origin_pad -= numpad*spacing for axis in range(3): sl_out[axis] = slice(numpad[axis],None) elif padding=='after': dim_pad += numpad for axis in range(3): sl_out[axis] = slice(0,-numpad[axis]) elif padding=='both': dim_pad += 2*numpad origin_pad -= numpad*spacing for axis in range(3): sl_out[axis] = slice(numpad[axis],-numpad[axis]) else: raise ValueError("'padding' must either be None or one of {'before','after','both'}.") sl_out = tuple(sl_out) origin_pad = tuple(origin_pad) dim_pad = tuple(dim_pad) return (origin_pad,dim_pad,sl_out) def weights_trilinear(self,rel_dist): assert len(rel_dist)==3, "len(rel_dist) must be 3." cx,cy,cz = rel_dist if cx<0.0 and cx>-self.eps_collapse: cx=0.0 if cy<0.0 and cy>-self.eps_collapse: cy=0.0 if cz<0.0 and cz>-self.eps_collapse: cz=0.0 if cx>1.0 and cx<1.0+self.eps_collapse: cx=1.0 if cy>1.0 and cy<1.0+self.eps_collapse: cy=1.0 if cz>1.0 and cz<1.0+self.eps_collapse: cz=1.0 assert cx>=0.0 and cy>=0.0 and cz>=0.0, "'rel_dist' must be >=0" assert cx<=1.0 and cy<=1.0 and cz<=1.0, "'rel_dist' must be <=1" c = np.zeros((2,2,2)) c[0,0,0] = 1.0-(cx+cy+cz)+(cx*cy+cx*cz+cy*cz)-(cx*cy*cz) c[1,0,0] = cx-(cx*cy+cx*cz)+(cx*cy*cz) c[0,1,0] = cy-(cx*cy+cy*cz)+(cx*cy*cz) c[0,0,1] = cz-(cx*cz+cy*cz)+(cx*cy*cz) c[1,1,0] = (cx*cy)-(cx*cy*cz) c[1,0,1] = (cx*cz)-(cx*cy*cz) c[0,1,1] = (cy*cz)-(cx*cy*cz) c[1,1,1] = (cx*cy*cz) return c def set_writable(self,flag): self.data.setflags(write=flag) return def to_vtk(self,deep=False): import pyvista as pv mesh = pv.UniformGrid() mesh.dimensions = self.dim(axis=None) mesh.origin = self.origin mesh.spacing = self.spacing # order needs to be F no matter how array is stored in memory if deep: mesh.point_arrays['data'] = self.data.flatten(order='F') else: if not self.data.flags['F_CONTIGUOUS']: self.data = np.asfortranarray(self.data) mesh.point_arrays['data'] = self.data.ravel(order='F') return mesh def vtk_contour(self,val,deep=False,method='contour'): if not isinstance(val,(tuple,list)): val = [val] return self.to_vtk(deep=deep).contour(val,method=method) def vtk_slice(self,normal,origin,deep=False): assert (normal in ('x','y','z') or (isinstance(normal,(tuple,list)) and len(normal)==3)), "'normal' must be 'x','y','z' or tuple of length 3." assert isinstance(origin,(tuple,list)) and len(origin)==3,\ "'origin' must be tuple of length 3." return self.to_vtk(deep=deep).slice(normal=normal,origin=origin) def gaussian_filter_umean_channel(array,spacing,sigma,truncate=4.0): '''Applies a Gaussian filter to a numpy array of dimension (1,ny,1) which contains the mean streamwise velocity of the channel (or possibly sth else). Since yu[0] = c and yu[-1] = d, we can use scipy's mirror settings and don't need ghost cells.''' from scipy import ndimage assert array.ndim==3, "Expected an array with three dimensions/axes." assert array.shape[0]==1 and array.shape[1]>1 and array.shape[2]==1,\ "Expected an array with shape (1,ny,1)." sigma_img = sigma/spacing array = ndimage.gaussian_filter1d(array,sigma_img,axis=1,truncate=truncate,mode='mirror') return array class Features3d: def __init__(self,input,threshold,origin,spacing,periodicity, invert=False,has_ghost=False,keep_input=False, contour_method='flying_edges',cellvol_normal_component=2, report=False): assert len(origin)==3, "'origin' must be of length 3" assert len(spacing)==3, "'spacing' must be of length 3" assert len(periodicity)==3, "'periodicity' must be of length 3" assert isinstance(input,np.ndarray), "'input' must be numpy.ndarray." # Assign basic properties to class variables self.origin = np.array(origin,dtype=np.float) self.spacing = np.array(spacing,dtype=np.float) self.dimensions = input.shape self.periodicity = tuple(bool(x) for x in periodicity) # If regions are supposed to be inverted, i.e. the interior consists of values # smaller than the threshold instead of larger, change the sign of the array. sign_invert = -1 if invert else +1 self._threshold = sign_invert*threshold # '_input' is the array which is to be triangulated. Here one trailing ghost cell is # required to get closed surfaces. The data will always be copied since it probably # needs to be copied for vtk anyway (needs FORTRAN contiguous array) and this way # there will never be side effects on the input data. if has_ghost: self._input = sign_invert*input else: pw = tuple((0,1) if x else (0,0) for x in periodicity) self._input = np.pad(sign_invert*input,pw,mode='wrap') # Triangulate self.triangulate(contour_method=contour_method, cellvol_normal_component=cellvol_normal_component, report=report) # Drop input if requested: this may free memory in case it was copied/temporary. if not keep_input: self._input = None return @classmethod def from_field(cls,fld,threshold,periodicity,invert=False,has_ghost=False, keep_input=False,contour_method='flying_edges', cellvol_normal_component=2,report=False): return cls(fld.data,threshold,fld.origin,fld.spacing,periodicity, invert=invert,has_ghost=has_ghost,keep_input=keep_input, contour_method=contour_method, cellvol_normal_component=cellvol_normal_component, report=report) def triangulate(self,contour_method='flying_edges',cellvol_normal_component=2,report=False): import pyvista as pv import vtk from scipy import ndimage, spatial # Check if '_input' is available: might have been dropped after initialization assert self._input is not None, "'_input' not available. Initialize object with keep_input=True flag." # Wrap data for VTK using pyvista datavtk = pv.UniformGrid() datavtk.dimensions = self._input.shape datavtk.origin = self.origin datavtk.spacing = self.spacing datavtk.point_arrays['data'] = self._input.ravel('F') # Compute full contour: ensure we only have triangles to efficiently extract points # later on. if report: print('[Features3d.triangulate] computing isocontour using {}...'.format(contour_method)) contour_ = datavtk.contour([self._threshold],method=contour_method,compute_scalars=False) assert contour_.is_all_triangles(), "Contouring produced non-triangle cells." # Compute the connectivity of the triangulated surface: first we run an ordinary # connectivity filter neglecting periodic wrapping. if report: print('[Features3d.triangulate] computing connectivity...') alg = vtk.vtkPolyDataConnectivityFilter() # ~twice as fast as default vtkConnectivityFilter alg.SetInputData(contour_) alg.SetExtractionModeToAllRegions() alg.SetColorRegions(True) alg.Update() contour_ = pv.filters._get_output(alg) # Now determine the boundary points, i.e. points on the boundary which have a corresponding # vertex on the other side of the domain if report: print('[Features3d.triangulate] correcting connectivity for periodic boundaries...') points = contour_.points bd_points_xyz = np.zeros((0,3),dtype=points.dtype) bd_points_idx = np.zeros((0,),dtype=np.int) for axis in range(3): if not self.periodicity[axis]: continue # Compute position of boundary, period of domain and set a threshold for "on boundary" condition bound_pos = datavtk.origin[axis]+datavtk.spacing[axis]*(datavtk.dimensions[axis]-1) period = np.zeros((3,)) period[axis] = bound_pos-datavtk.origin[axis] bound_dist = 1e-5*datavtk.spacing[axis] # Lower boundary li = np.abs(points[:,axis]-datavtk.origin[axis])0 # Invert to get the final result np.logical_not(self._data,self._data) # If labels have been computed already, recompute them to stay consistent if self._labels is not None: self.label() def probe(self,idx,probe_label=False): '''Returns whether or not a point at idx is True or False.''' if probe_label: return self._labels[tuple(idx)] else: return self._data[tuple(idx)] def volume(self,label): '''Returns the sum of True values.''' if label is None: return np.sum(self.data) else: if self._labels is None: self.label() return np.sum(self.labels==label) def volumes(self): '''Returns volume of all features, i.e. connected regions which have been labeled using the label() method including the volume of the background region. The array is sorted by labels, i.e. vol[0] is the volume of the background region, vol[1] the volume of label 1, etc. If 'label' is an integer value, only the volume of the corresponding region is returned. Note: it is more efficient to retrieve all volumes at once than querying single labels.''' if self._labels is None: self.label() return np.bincount(self.labels.ravel()) def volume_domain(self): '''Returns volume of entire domain. Should be equal to sum(volume_feature()).''' dim = tuple(self._dim[axis]-1 if self.periodicity[axis] else self._dim[axis] for axis in range(self._ndim)) return np.prod(dim) def feature_labels_by_volume(self,descending=True,return_volumes=False): '''Returns labels of connected regions sorted by volume.''' vol = self.volumes()[1:] labels = np.argsort(vol)+1 if descending: labels = labels[::-1] vol = vol[::-1] if return_volumes: return labels,vol else: return labels def discard_features(self,selection,return_mask=False): '''Removes features from data. Optionally returns a boolean array 'mask' which marks position of features which have been removed.''' if self._labels is None: self.label() selection = self._select_features(selection) # Map tagged regions to zero in order to discard them map_ = np.array(range(self.nlabels+1),dtype=self._labels.dtype) map_[selection] = 0 # Remove gaps from target mapping idx_,map_ = np.unique(map_,return_index=True,return_inverse=True)[1:3] # Discard regions self._labels = map_[self._labels] self.nlabels = np.max(map_) print(self.nlabels) self.wrap = tuple(None if x is None else x[idx_] for x in self.wrap) # for axis in range(self._ndim): # if self.wrap[axis] is not None: # self.wrap[axis] = self.wrap[axis][idx_] if return_mask: mask = np.logical_and(self._labels==0,self._data) self._data = self._labels>0 if return_mask: return mask def _select_features(self,selection): dtype = self._labels.dtype if selection is None: return np.array(range(1,self.nlabels+1)) elif np.issubdtype(type(selection),np.integer): return np.array(selection,dtype=dtype,ndmin=1) elif isinstance(selection,(list,tuple,np.ndarray)): selection = np.array(selection) if selection.dtype==np.dtype('bool'): assert selection.ndim==1 and selection.shape[0]==self.nlabels+1,\ "Boolean indexing must provide count+1 values." else: selection = selection.astype(dtype) assert np.max(selection)<=self.nlabels and np.min(selection)>=0,\ "Entry in selection is out-of-bounds." return selection else: raise ValueError('Invalid input. Accepting int,list,tuple,ndarray.') class ChunkIterator: '''Iterates through all chunks. 'snapshot' must be an instance of a class which returns a Field3d from the method call snapshot.field_chunk(rank,key,keep_ghost=keep_ghost). One example implementation is UCFSnapshot from suspendtools.ucf.''' def __init__(self,snapshot,key,keep_ghost=True): self.snapshot = snapshot self.key = key self.keep_ghost = keep_ghost self.iter_rank = 0 def __iter__(self): self.iter_rank = 0 return self def __next__(self): if self.iter_rank