Compare commits
No commits in common. "5b40dea605ebf3f845944ffe22485abe2882b98d" and "2a779c3a2dec17b780668d25aa2aa64c9fae6a9a" have entirely different histories.
5b40dea605
...
2a779c3a2d
81
field.py
81
field.py
|
|
@ -587,56 +587,18 @@ def gaussian_filter_umean_channel(array,spacing,sigma,truncate=4.0):
|
|||
array = ndimage.gaussian_filter1d(array,sigma_img,axis=1,truncate=truncate,mode='mirror')
|
||||
return array
|
||||
|
||||
class VoxelThreshold:
|
||||
def __init__(self,data,threshold,invert=False):
|
||||
assert isinstance(data,np.ndarray),\
|
||||
"'data' must be a numpy array."
|
||||
self._dim = data.shape
|
||||
self._ndim = data.ndim
|
||||
if invert:
|
||||
self.data = data<threshold
|
||||
else:
|
||||
self.data = data>=threshold
|
||||
|
||||
@classmethod
|
||||
def from_field(cls,fld3d,threshold,invert=False):
|
||||
return cls(fld3d.data,threshold,invert=invert)
|
||||
|
||||
def fill_holes(self,periodicity=(False,False,False)):
|
||||
'''Fills topological holes in threshold regions.'''
|
||||
assert all([isinstance(x,(bool,int)) for x in periodicity]),\
|
||||
"'periodicity' requires bool values."
|
||||
from scipy import ndimage
|
||||
binarr = ndimage.binary_fill_holes(self.data)
|
||||
for axis in range(self._ndim):
|
||||
if periodicity[axis]:
|
||||
n = binarr.shape[axis]
|
||||
binarr = np.roll(binarr,n//2,axis=axis)
|
||||
binarr = ndimage.binary_fill_holes(binarr)
|
||||
binarr = np.roll(binarr,-n//2,axis=axis)
|
||||
self.data = binarr
|
||||
return
|
||||
|
||||
def probe(self,idx):
|
||||
'''Returns whether or not point at index is inside threshold region or not.'''
|
||||
return self.data[tuple(idx)]
|
||||
|
||||
def volume(self):
|
||||
'''Returns volume of region above threshold.'''
|
||||
return np.sum(self.data)
|
||||
|
||||
class ConnectedRegions:
|
||||
def __init__(self,binarr,periodicity,connect_diagonals=False,fill_holes=False,bytes_label=32):
|
||||
assert isinstance(binarr,np.ndarray) and binarr.dtype==np.dtype('bool'),\
|
||||
"'binarr' must be a numpy array of dtype('bool')."
|
||||
def __init__(self,boolarr,periodicity,connect_diagonals=False,bytes_label=32):
|
||||
assert isinstance(boolarr,np.ndarray) and boolarr.dtype==np.dtype('bool'),\
|
||||
"'boolarr' must be a numpy array of dtype('bool')."
|
||||
assert all([isinstance(x,(bool,int)) for x in periodicity]),\
|
||||
"'periodicity' requires bool values."
|
||||
assert bytes_label in (8,16,32,64),\
|
||||
"'bytes_label' must be one of {8,16,32,64}."
|
||||
self._dim = binarr.shape
|
||||
self._ndim = binarr.ndim
|
||||
self._dim = boolarr.shape
|
||||
self._ndim = boolarr.ndim
|
||||
assert self._ndim in (2,3),\
|
||||
"'binarr' must be either two or three dimensional."
|
||||
"'boolarr' must be either two or three dimensional."
|
||||
assert len(periodicity)==self._ndim,\
|
||||
"Length of 'periodicity' must match number of dimensions of data."
|
||||
from scipy import ndimage
|
||||
|
|
@ -663,7 +625,7 @@ class ConnectedRegions:
|
|||
# this does not take into account periodic wrapping
|
||||
dtype_label = np.dtype('uint'+str(bytes_label))
|
||||
self.label = np.empty(self._dim,dtype=dtype_label)
|
||||
ndimage.label(binarr,structure=connectivity,output=self.label)
|
||||
ndimage.label(boolarr,structure=connectivity,output=self.label)
|
||||
self.count = np.max(self.label)
|
||||
# Merge labels if there are periodic overlaps
|
||||
map_tgt = np.array(range(0,self.count+1),dtype=dtype_label)
|
||||
|
|
@ -673,9 +635,9 @@ class ConnectedRegions:
|
|||
# Merge the first and last plane and compute connectivity
|
||||
sl = self._ndim*[slice(None)]
|
||||
sl[axis] = (-1,0)
|
||||
binarr_ = binarr[tuple(sl)]
|
||||
label_ = np.empty(binarr_.shape,dtype=dtype_label)
|
||||
ndimage.label(binarr_,structure=connectivity,output=label_)
|
||||
boolarr_ = boolarr[tuple(sl)]
|
||||
label_ = np.empty(boolarr_.shape,dtype=dtype_label)
|
||||
ndimage.label(boolarr_,structure=connectivity,output=label_)
|
||||
for val_ in np.unique(label_):
|
||||
# Get all global labels which are associated to a region
|
||||
# connected over the boundary
|
||||
|
|
@ -697,18 +659,13 @@ class ConnectedRegions:
|
|||
self.count = np.max(map_tgt)
|
||||
|
||||
@classmethod
|
||||
def from_field(cls,fld3d,threshold,periodicity,connect_diagonals=False,bytes_label=32,invert=False):
|
||||
voxthr = VoxelThreshold.from_field(fld3d,threshold,invert=invert)
|
||||
return cls.from_voxelthresh(voxthr,periodicity,
|
||||
connect_diagonals=connect_diagonals,
|
||||
bytes_label=bytes_label)
|
||||
|
||||
@classmethod
|
||||
def from_voxelthresh(cls,voxthr,periodicity,connect_diagonals=False,bytes_label=32):
|
||||
return cls(voxthr.data,periodicity,
|
||||
connect_diagonals=connect_diagonals,
|
||||
bytes_label=bytes_label)
|
||||
|
||||
def from_field(cls,fld3d,val,periodicity,connect_diagonals=False,bytes_label=32,invert_threshold=False):
|
||||
if invert_threshold:
|
||||
return cls(fld3d.data<val,periodicity,
|
||||
connect_diagonals=connect_diagonals,bytes_label=bytes_label)
|
||||
else:
|
||||
return cls(fld3d.data>=val,periodicity,
|
||||
connect_diagonals=connect_diagonals,bytes_label=bytes_label)
|
||||
|
||||
def volume(self,label=None):
|
||||
'''Returns volume of labeled regions. If 'label' is None all volumes
|
||||
|
|
@ -745,10 +702,6 @@ class ConnectedRegions:
|
|||
self.label = map_tgt[self.label]
|
||||
self.count = np.max(map_tgt)
|
||||
|
||||
def probe(self,idx):
|
||||
'''Returns label for given index.'''
|
||||
return self.label[tuple(idx)]
|
||||
|
||||
def vtk_contour(self,fld3,val,selection):
|
||||
'''Computes contours of a Field3d only within selected structures.'''
|
||||
assert isinstance(fld3,Field3d), "'fld3' must be a Field3d instance."
|
||||
|
|
|
|||
47
particle.py
47
particle.py
|
|
@ -123,52 +123,6 @@ class Particles:
|
|||
key = ('x','y','z')[axis]
|
||||
self.attr[key] %= self.period[axis]
|
||||
return
|
||||
def position_duplicates(self,ipart,padding=0.0):
|
||||
pos = np.array((px[ipart],py[ipart],pz[ipart]))
|
||||
rp = pr[ipart]+padding
|
||||
posd = [pos.copy()]
|
||||
for axis in range(3):
|
||||
if self.period[axis] is not None:
|
||||
nposd = len(posd)
|
||||
if pos[axis]-rp<0.0:
|
||||
for ii in range(nposd):
|
||||
tmp = posd[ii].copy()
|
||||
tmp[axis] = np.mod(tmp[axis]-rp,self.period[axis])
|
||||
posd.append(tmp)
|
||||
if pos[axis]+rp>self.period[axis]:
|
||||
for ii in range(nposd):
|
||||
tmp = posd[ii].copy()
|
||||
tmp[axis] = np.mod(tmp[axis]+rp,self.period[axis])
|
||||
posd.append(tmp)
|
||||
return posd
|
||||
def mask_field(self,fld,cval=np.nan,padding=0.0):
|
||||
'''Fills grid points which lie inside of solid phase with values.'''
|
||||
for ipart in range(0,part.num):
|
||||
# Slice a box from the field around the particle
|
||||
xp,yp,zp,rp = (px[ipart],py[ipart],pz[ipart],pr[ipart])
|
||||
rp += padding
|
||||
idxlo = np.array(fld.nearest_gridpoint(np.array(xp,yp,zp)-rp,lower=True))
|
||||
idxhi = idxlo+2*rp/fld.spacing
|
||||
|
||||
|
||||
# Get bounding box of particle
|
||||
idx_x = np.nonzero((xg>=xp-rp) & (xg<=xp+rp))[0]
|
||||
idx_y = np.nonzero((yg>=yp-rp) & (yg<=yp+rp))[0]
|
||||
idx_z = np.nonzero((zg>=zp-rp) & (zg<=zp+rp))[0]
|
||||
# Triple for loop
|
||||
for ii in range(idx_x[0],idx_x[-1]+1):
|
||||
Dx = xg[ii]-xp
|
||||
for jj in range(idx_y[0],idx_y[-1]+1):
|
||||
Dy = yg[jj]-yp
|
||||
for kk in range(idx_z[0],idx_z[-1]+1):
|
||||
Dz = zg[kk]-zp
|
||||
isInside = Dx*Dx+Dy*Dy+Dz*Dz <= rp*rp
|
||||
if isInside:
|
||||
if reconstruct:
|
||||
self.field[key][ii,jj,kk] = coeff_lin + coeff_rotx*Dx + coeff_roty*Dy + coeff_rotz*Dz
|
||||
else:
|
||||
self.field[key][ii,jj,kk] = cval
|
||||
return
|
||||
def to_vtk(self,deep=False):
|
||||
import pyvista as pv
|
||||
position = np.vstack([self.attr[key] for key in ('x','y','z')]).transpose()
|
||||
|
|
@ -176,6 +130,7 @@ class Particles:
|
|||
for key in self.attr:
|
||||
mesh[key] = self.attr[key]
|
||||
return mesh
|
||||
|
||||
def glyph(self,theta_resolution=30,phi_resolution=30,deep=False):
|
||||
import pyvista as pv
|
||||
assert self.has_attribute('r'), "Attribute 'r' required."
|
||||
|
|
|
|||
Loading…
Reference in New Issue