Features3d now fully based on triangulation: needs to be tested and some routines implemented
This commit is contained in:
parent
0c2db9fa79
commit
fd23122470
159
field.py
159
field.py
|
|
@ -648,13 +648,11 @@ def gaussian_filter_umean_channel(array,spacing,sigma,truncate=4.0):
|
||||||
|
|
||||||
|
|
||||||
class Features3d:
|
class Features3d:
|
||||||
def __init__(self,input,threshold,origin,spacing,periodicity,connect_diagonals=True,invert=False,has_ghost=False):
|
def __init__(self,input,threshold,origin,spacing,periodicity,invert=False,has_ghost=False):
|
||||||
assert len(origin)==3, "'origin' must be of length 3"
|
assert len(origin)==3, "'origin' must be of length 3"
|
||||||
assert len(spacing)==3, "'spacing' must be of length 3"
|
assert len(spacing)==3, "'spacing' must be of length 3"
|
||||||
assert len(periodicity)==3, "'periodicity' must be of length 3"
|
assert len(periodicity)==3, "'periodicity' must be of length 3"
|
||||||
assert isinstance(input,np.ndarray), "'input' must be numpy.ndarray."
|
assert isinstance(input,np.ndarray), "'input' must be numpy.ndarray."
|
||||||
# Import libraries
|
|
||||||
import pyvista as pv
|
|
||||||
# Assign basic properties to class variables
|
# Assign basic properties to class variables
|
||||||
self.origin = tuple(float(x) for x in origin)
|
self.origin = tuple(float(x) for x in origin)
|
||||||
self.spacing = tuple(float(x) for x in spacing)
|
self.spacing = tuple(float(x) for x in spacing)
|
||||||
|
|
@ -664,26 +662,17 @@ class Features3d:
|
||||||
# If regions are supposed to be inverted, i.e. the interior consists of values
|
# If regions are supposed to be inverted, i.e. the interior consists of values
|
||||||
# smaller than the threshold instead of larger, change the sign of the array.
|
# smaller than the threshold instead of larger, change the sign of the array.
|
||||||
sign_invert = -1 if invert else +1
|
sign_invert = -1 if invert else +1
|
||||||
self._threshold = threshold
|
self._threshold = sign_invert*threshold
|
||||||
# '_data' is the array which is to be triangulated. Here one trailing ghost cell is
|
# '_data' is the array which is to be triangulated. Here one trailing ghost cell is
|
||||||
# required to get closed surfaces. The data will always be copied since it probably
|
# required to get closed surfaces. The data will always be copied since it probably
|
||||||
# needs to be copied for vtk anyway (needs FORTRAN contiguous array) and this way
|
# needs to be copied for vtk anyway (needs FORTRAN contiguous array) and this way
|
||||||
# there will never be side effects on the input data.
|
# there will never be side effects on the input data.
|
||||||
if has_ghost:
|
if has_ghost:
|
||||||
self._data = np.asfortranarray(sign_invert*input)
|
self._data = sign_invert*input
|
||||||
else:
|
else:
|
||||||
pw = tuple((0,1) if x else (0,0) for x in periodicity)
|
pw = tuple((0,1) if x else (0,0) for x in periodicity)
|
||||||
self._data = np.asfortranarray(np.pad(sign_invert*input,pw,mode='wrap'))
|
self._data = np.pad(sign_invert*input,pw,mode='wrap')
|
||||||
# 'binary' is a BinaryField which determines the connectivity of regions
|
|
||||||
# and provides morphological manipulations.
|
|
||||||
self.binary = BinaryFieldNd(self._data>=self._threshold,periodicity,
|
|
||||||
connect_diagonals=connect_diagonals,
|
|
||||||
deep=False,has_ghost=has_ghost)
|
|
||||||
# Compute features in 'binary' by labeling.
|
|
||||||
self.binary.label()
|
|
||||||
# Set arrays produced by triangulation to None
|
|
||||||
self._points = None
|
|
||||||
self._faces = None
|
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
|
|
@ -700,32 +689,36 @@ class Features3d:
|
||||||
def faces(self): return self._faces
|
def faces(self): return self._faces
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def nfeatures(self): return self.binary.nlabels
|
def nfeatures(self): return self._nfeatures
|
||||||
|
|
||||||
def fill_holes(self):
|
def fill_holes(self):
|
||||||
self.binary.fill_holes()
|
# Check if volume negative -> cell normal direction
|
||||||
li = ndimage.binary_erosion(self.binary._data)
|
|
||||||
self._data[li] = 2*self._threshold # arbitrary, only needs to be above threshold
|
# self.binary.fill_holes()
|
||||||
if self._faces is not None:
|
# li = ndimage.binary_erosion(self.binary._data)
|
||||||
self.triangulate(contour_method=self.__TRI_CONTMETH,
|
# self._data[li] = 2*self._threshold # arbitrary, only needs to be above threshold
|
||||||
cellvol_normal_component=self.__TRI_NORMCOMP)
|
# if self._faces is not None:
|
||||||
|
# self.triangulate(contour_method=self.__TRI_CONTMETH,
|
||||||
|
# cellvol_normal_component=self.__TRI_NORMCOMP)
|
||||||
|
return
|
||||||
|
|
||||||
def reduce_noise(self,threshold=1e-5,is_relative=True):
|
def reduce_noise(self,threshold=1e-5,is_relative=True):
|
||||||
'''Removes all objects with smaller (binary-based) volume than a threshold.'''
|
'''Removes all objects with smaller (binary-based) volume than a threshold.'''
|
||||||
if is_relative:
|
# if is_relative:
|
||||||
threshold = threshold*self.binary.volume_domain()
|
# threshold = threshold*self.binary.volume_domain()
|
||||||
vol = self.binary.volumes()
|
# vol = self.binary.volumes()
|
||||||
li = vol<threshold
|
# li = vol<threshold
|
||||||
mask = self.binary.discard_features(li,return_mask=True)
|
# mask = self.binary.discard_features(li,return_mask=True)
|
||||||
self._data[mask] = np.nan#self._threshold
|
# self._data[mask] = np.nan#self._threshold
|
||||||
if self._faces is not None:
|
# if self._faces is not None:
|
||||||
self.triangulate(contour_method=self.__TRI_CONTMETH,
|
# self.triangulate(contour_method=self.__TRI_CONTMETH,
|
||||||
cellvol_normal_component=self.__TRI_NORMCOMP)
|
# cellvol_normal_component=self.__TRI_NORMCOMP)
|
||||||
return
|
return
|
||||||
|
|
||||||
def triangulate(self,contour_method='flying_edges',cellvol_normal_component=2):
|
def triangulate(self,contour_method='flying_edges',cellvol_normal_component=2):
|
||||||
import pyvista as pv
|
import pyvista as pv
|
||||||
from scipy import ndimage
|
import vtk
|
||||||
|
from scipy import ndimage, spatial
|
||||||
from time import time
|
from time import time
|
||||||
# Save arguments in case we need to recreate triangulation later on
|
# Save arguments in case we need to recreate triangulation later on
|
||||||
self.__TRI_CONTMETH = contour_method
|
self.__TRI_CONTMETH = contour_method
|
||||||
|
|
@ -742,28 +735,85 @@ class Features3d:
|
||||||
contour_ = datavtk.contour([self._threshold],method=contour_method,compute_scalars=False)
|
contour_ = datavtk.contour([self._threshold],method=contour_method,compute_scalars=False)
|
||||||
assert contour_.is_all_triangles(), "Contouring produced non-triangle cells."
|
assert contour_.is_all_triangles(), "Contouring produced non-triangle cells."
|
||||||
print('CONTOUR:',time()-t)
|
print('CONTOUR:',time()-t)
|
||||||
# Interpolate labels from binary array: first the array needs to be
|
# Compute the connectivity of the triangulated surface: first we run a normal
|
||||||
# dilated to ensure that we get proper values for the cell vertex interpolation.
|
# connectivity filter neglecting periodic wrapping.
|
||||||
t = time()
|
t = time()
|
||||||
# labels_ = ndimage.grey_dilation(self.binary._labels,size=(3,3,3),mode='wrap')
|
alg = vtk.vtkPolyDataConnectivityFilter() # ~twice as fast as default vtkConnectivityFilter
|
||||||
labels_ = ndimage.maximum_filter(self.binary._labels,size=(3,3,3),mode='wrap')
|
alg.SetInputData(contour_)
|
||||||
print('DILATION:',time()-t)
|
alg.SetExtractionModeToAllRegions()
|
||||||
# Labels are interpolated on points, and then the first point of each cell determines
|
alg.SetColorRegions(True)
|
||||||
# the value for this cell. This allows us to skip cell center computation and reduce
|
alg.Update()
|
||||||
# the number of points which need to be interpolated. ndimage's 'map_coordinates' is
|
contour_ = pv.filters._get_output(alg)
|
||||||
# the fastest interpolation routine I could find, but coordinates need to be provided
|
print('connectivity computed in',time()-t,'seconds')
|
||||||
# as pixel values.
|
# Now determine the boundary points, i.e. points on the boundary which have a corresponding
|
||||||
|
# vertex on the other side of the domain
|
||||||
t = time()
|
t = time()
|
||||||
pixel_coords = (contour_.points-self.origin)/self.spacing
|
points = contour_.points
|
||||||
point_val = ndimage.map_coordinates(labels_,pixel_coords.transpose(),order=0,mode='grid-wrap',prefilter=False)
|
bd_points_xyz = np.zeros((0,3),dtype=points.dtype)
|
||||||
cell_val = point_val[contour_.faces.reshape(contour_.n_faces,4)[:,1]]
|
bd_points_idx = np.zeros((0,),dtype=np.int64)
|
||||||
print('INTERPOLATION:',time()-t)
|
for axis in range(3):
|
||||||
|
if not self.periodicity[axis]: continue
|
||||||
|
# Compute position of boundary, period of domain and set a threshold for "on boundary" condition
|
||||||
|
bound_pos = datavtk.origin[axis]+datavtk.spacing[axis]*(datavtk.dimensions[axis]-1)
|
||||||
|
period = np.zeros((3,))
|
||||||
|
period[axis] = bound_pos-datavtk.origin[axis]
|
||||||
|
bound_dist = 1e-5*datavtk.spacing[axis]
|
||||||
|
# Lower boundary
|
||||||
|
li = np.abs(points[:,axis]-datavtk.origin[axis])<bound_dist
|
||||||
|
bd_points_idx = np.append(bd_points_idx,np.nonzero(li)[0],axis=0)
|
||||||
|
bd_points_xyz = np.append(bd_points_xyz,points[li,:],axis=0)
|
||||||
|
# Upper boundary
|
||||||
|
li = np.abs(points[:,axis]-bound_pos)<bound_dist
|
||||||
|
bd_points_idx = np.append(bd_points_idx,np.nonzero(li)[0],axis=0)
|
||||||
|
bd_points_xyz = np.append(bd_points_xyz,points[li,:]-period,axis=0)
|
||||||
|
print('Points selected in',time()-t,'seconds')
|
||||||
|
# Construct a KD Tree for efficient neighborhood search
|
||||||
|
t = time()
|
||||||
|
kd = spatial.KDTree(bd_points_xyz,leafsize=10,compact_nodes=True,copy_data=False,balanced_tree=True)
|
||||||
|
print('kd tree built in',time()-t,'seconds')
|
||||||
|
# Construct a map to get new labels for regions. We search for pairs of points with
|
||||||
|
# a very small distance inbetween. Then we check if their labels differ and choose
|
||||||
|
# the lower label as the new joint one.
|
||||||
|
t = time()
|
||||||
|
point_labels = contour_.point_arrays['RegionId']
|
||||||
|
nfeatures = np.max(point_labels)
|
||||||
|
map_ = np.array(range(nfeatures+1),dtype=point_labels.dtype)
|
||||||
|
overlap_dist = 1e-4*np.sqrt(np.square(datavtk.spacing).sum())
|
||||||
|
for (ii,jj) in kd.query_pairs(r=overlap_dist):
|
||||||
|
label_ii = point_labels[bd_points_idx[ii]]
|
||||||
|
label_jj = point_labels[bd_points_idx[jj]]
|
||||||
|
if label_ii!=label_jj:
|
||||||
|
source_ = np.maximum(label_ii,label_jj)
|
||||||
|
target_ = np.minimum(label_ii,label_jj)
|
||||||
|
while target_ != map_[target_]: # map it recursively
|
||||||
|
target_ = map_[target_]
|
||||||
|
map_[source_] = target_
|
||||||
|
#
|
||||||
|
map_ = np.unique(map_,return_inverse=True)[1]
|
||||||
|
point_labels = map_[point_labels]
|
||||||
|
nfeatures = np.max(map_)
|
||||||
|
print('mapped overlaps in',time()-t,'seconds')
|
||||||
|
|
||||||
|
# pl = pv.Plotter()
|
||||||
|
# pl.add_mesh(contour_,scalars=point_labels,opacity=1.0,specular=1.0,interpolate_before_map=True)
|
||||||
|
# pl.show()
|
||||||
|
|
||||||
|
# Labels are now stored as point data. To efficiently convert it to cell data, the first
|
||||||
|
# point of each cell determines the value for this cell.
|
||||||
|
t = time()
|
||||||
|
ncells = contour_.n_faces
|
||||||
|
faces = contour_.faces.reshape(ncells,4)[:,:]
|
||||||
|
# cell_labels = np.zeros((ncells,))
|
||||||
|
# for ii,face in enumerate(faces):
|
||||||
|
# cell_labels[ii] = point_labels[face[1]]
|
||||||
|
cell_labels = point_labels[faces[:,1]]
|
||||||
|
print('cell interpolation in',time()-t,'seconds')
|
||||||
# While we have the full contour in memory, compute the area and volume per cell. For
|
# While we have the full contour in memory, compute the area and volume per cell. For
|
||||||
# the volume computation, an arbitrary component of the normal has to be chosen which
|
# the volume computation, an arbitrary component of the normal has to be chosen which
|
||||||
# defaults to the z-component and is set by 'cellvol_normal_component'.
|
# defaults to the z-component and is set by 'cellvol_normal_component'.
|
||||||
t = time()
|
t = time()
|
||||||
faces = contour_.faces.reshape(contour_.n_faces,4)[:,:]
|
# faces = contour_.faces.reshape(contour_.n_faces,4)[:,:]
|
||||||
points = contour_.points
|
# points = contour_.points
|
||||||
X = points[faces[:,1],:]
|
X = points[faces[:,1],:]
|
||||||
Y = points[faces[:,2],:]
|
Y = points[faces[:,2],:]
|
||||||
Z = points[faces[:,3],:]
|
Z = points[faces[:,3],:]
|
||||||
|
|
@ -776,13 +826,14 @@ class Features3d:
|
||||||
# and group them. Internally we will store the points in one array and the cells in
|
# and group them. Internally we will store the points in one array and the cells in
|
||||||
# nlabel tuples of ndarrays.
|
# nlabel tuples of ndarrays.
|
||||||
t = time()
|
t = time()
|
||||||
offset = np.cumsum(np.bincount(cell_val))[1:-1]
|
offset = np.cumsum(np.bincount(cell_labels))[1:-1]
|
||||||
ind = np.argsort(cell_val)
|
ind = np.argsort(cell_labels)
|
||||||
self._offset = offset
|
self._offset = offset
|
||||||
self._faces = contour_.faces.reshape(contour_.n_faces,4)[ind,:]
|
self._faces = faces[ind,1:]
|
||||||
self._points = points
|
self._points = points
|
||||||
self._cell_areas = area[ind]
|
self._cell_areas = area[ind]
|
||||||
self._cell_volumes = vol[ind]
|
self._cell_volumes = vol[ind]
|
||||||
|
self._nfeatures = nfeatures
|
||||||
print('FINALIZING:',time()-t)
|
print('FINALIZING:',time()-t)
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
@ -839,8 +890,8 @@ class Features3d:
|
||||||
def which_feature(self,coords,method='binary'):
|
def which_feature(self,coords,method='binary'):
|
||||||
coords = np.array(coords)
|
coords = np.array(coords)
|
||||||
assert coords.ndim==2 and coords.shape[1]==3, "'coords' need to be provided as 3xN array."
|
assert coords.ndim==2 and coords.shape[1]==3, "'coords' need to be provided as 3xN array."
|
||||||
if method=='binary':
|
# if method=='binary':
|
||||||
idx = np.round()
|
# idx = np.round()
|
||||||
# elif method=='triangulation':
|
# elif method=='triangulation':
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue