implemented feature search. it should work now and perform well.

This commit is contained in:
Michael Krayer 2021-08-13 02:04:15 +02:00
parent cee9a661c8
commit 6e3564c3c1
1 changed files with 61 additions and 68 deletions

129
field.py
View File

@ -678,6 +678,10 @@ class Features3d:
self.triangulate(contour_method=contour_method,
cellvol_normal_component=cellvol_normal_component,
report=report)
# Set some state variable
self._kdtree = None
self._kdaxis = None
self._kdradius = None
# Drop input if requested: this may free memory in case it was copied/temporary.
if not keep_input: self._input = None
return
@ -870,7 +874,37 @@ class Features3d:
'''Returns an array with volumes of all features.'''
return np.add.reduceat(self._cell_volumes,self._offset[:-1])
def find_feature(self,pts):
def build_kdtree(self,kdaxis=0,leafsize=100,compact_nodes=False,balanced_tree=False,report=False):
'''Builds a KD-tree for feature search.'''
from scipy import spatial
if kdaxis==0:
min1 = np.amin(self._vertices[:,:,1],axis=1)
max1 = np.amax(self._vertices[:,:,1],axis=1)
min2 = np.amin(self._vertices[:,:,2],axis=1)
max2 = np.amax(self._vertices[:,:,2],axis=1)
elif kdaxis==1:
min1 = np.amin(self._vertices[:,:,0],axis=1)
max1 = np.amax(self._vertices[:,:,0],axis=1)
min2 = np.amin(self._vertices[:,:,2],axis=1)
max2 = np.amax(self._vertices[:,:,2],axis=1)
elif kdaxis==2:
min1 = np.amin(self._vertices[:,:,0],axis=1)
max1 = np.amax(self._vertices[:,:,0],axis=1)
min2 = np.amin(self._vertices[:,:,1],axis=1)
max2 = np.amax(self._vertices[:,:,1],axis=1)
else:
raise ValueError("Invalid ray axis.")
center = np.stack((0.5*(max1+min1),0.5*(max2+min2)),axis=1)
radius = 0.5*np.amax(np.sqrt((max1-min1)**2+(max2-min2)**2))
self._kdtree = spatial.KDTree(center,leafsize=leafsize,compact_nodes=compact_nodes,
copy_data=False,balanced_tree=balanced_tree)
self._kdaxis = kdaxis
self._kdradius = radius
if report:
print('[Features3d.build_kdtree]',end=' ')
print('KD-Tree built for axis {}.'.format(axis))
def inside_feature(self,coords):
'''Find nearest triangle from point R in direction ±dR and its orientation w.r.t dR.
The algorithm determines the closest intersection of a ray cast from the origin of the
point in the specified direction (with positiv and negative sign). The ray is supposed to
@ -889,80 +923,39 @@ class Features3d:
t: parameter to determine intersection point (x = R+t*dR) [float]
hit_dir: direction from which the triangle was hit, from inward/outward = +1,-1 [int]
'''
# coords = np.array(coords)
# assert coords.ndim==2 and coords.shape[1]==3, "'coords' need to be provided as Nx3 array."
from time import time
from scipy import spatial
coords = np.array(coords)
assert coords.ndim==2 and coords.shape[1]==3, "'coords' need to be provided as Nx3 array."
# pts = np.random.random((10000,3))
if not self._kdtree:
self.build_kdtree()
if self._kdaxis==0: query_axis = [1,2]
elif self._kdaxis==1: query_axis = [0,2]
elif self._kdaxis==2: query_axis = [0,1]
t = time()
cand = self._kdtree.query_ball_point(coords[:,query_axis],self._kdradius)
xmin = np.amin(self._vertices[:,:,0],axis=1)
xmax = np.amax(self._vertices[:,:,0],axis=1)
zmin = np.amin(self._vertices[:,:,2],axis=1)
zmax = np.amax(self._vertices[:,:,2],axis=1)
print(time()-t)
# print(xmin.shape,xmin2.shape)
# print(np.all(np.isclose(xmin,xmin2)))
center = np.stack((0.5*(xmax+xmin),0.5*(zmax+zmin)),axis=1)
radius = 0.5*np.amax(np.sqrt((xmax-xmin)**2+(zmax-zmin)**2))
print(time()-t)
del xmin,xmax,zmin,zmax
print('Preparation for KD tree in',time()-t)
t = time()
kd = spatial.KDTree(center,leafsize=100,compact_nodes=False,copy_data=False,balanced_tree=False)
# kd = spatial.KDTree(center,leafsize=10,compact_nodes=True,copy_data=False,balanced_tree=True)
# kd = spatial.KDTree(self.points[:,1:],leafsize=20,compact_nodes=False,copy_data=False,balanced_tree=False)
# kd = spatial.KDTree(self._points[:,1:],leafsize=10,compact_nodes=True,copy_data=False,balanced_tree=True)
print('KD tree built in',time()-t)
# t = time()
# map_ = self._points.shape[0]*[[]]
# for ii,face in enumerate(self._faces[:,1:].ravel()):
# map_[face].append(ii)
# faces_connected_to_vertex = {}
# for face_index,face in enumerate(self._faces[:,1:]):
# for vertex_index in face:
# faces_connected_to_vertex.setdefault(vertex_index,[]).append(face_index)
# print('Inverted cells-faces',time()-t)
# radius = np.sqrt(np.sum(self.spacing[1:]**2))
t = time()
bla = kd.query_ball_point(pts[:,[0,2]],radius)
print('KD tree query',time()-t)
t__ = time()
Npts = pts.shape[0]
print(pts.shape,Npts)
dR = (0,1,0)
is_inside = np.empty((Npts,),dtype=bool)
print(is_inside.shape)
for ii in range(Npts):
hit_idx,t,N = Features3d.ray_triangle_intersection(pts[ii],dR,
self._vertices[bla[ii],0,:],
self._vertices[bla[ii],1,:],
self._vertices[bla[ii],2,:])
N = coords.shape[0]
raydir = np.zeros((3,),dtype=self._vertices.dtype)
raydir[self._kdaxis] = 1.0
in_feat = np.empty((N,),dtype=np.int)
for ii in range(N):
hit_idx,t,N = Features3d.ray_triangle_intersection(coords[ii],raydir,
self._vertices[cand[ii],0,:],
self._vertices[cand[ii],1,:],
self._vertices[cand[ii],2,:])
if hit_idx is None:
is_inside[ii] = False
in_feat[ii] = -1
else:
idx = np.argmin(np.abs(t))
is_inside[ii] = t[idx]*(N[idx,:]*dR).sum(axis=-1)>0
print('inside check',time()-t__)
if t[idx]*(N[idx,:]*raydir).sum(axis=-1)>0:
in_feat[ii] = self.feature_by_cell(cand[ii][idx])
else:
in_feat[ii] = -1
return in_feat
# print(is_inside)
# The provided vertices do not need to form a closed surface! This means they can be
# filtered before being passed to this function.
# print(radius)
# print(len(kd.query_ball_point((0.5,0.0),radius,return_sorted=True)),self._points.shape[0])
# yset = set(x.data for x in sorted(treey.at(0.0)))
# zset = set(x.data for x in sorted(treez.at(0.0)))
return is_inside
def feature_by_cell(self,idx_cell):
'''Gets feature ID for a given cell.'''
return np.argmax(idx_cell>self._offset)
@staticmethod
def ray_triangle_intersection(R,dR,A,B,C):