bugfix: threshold() Field3d. Removed ConnectedRegions class, it has been replaced entirely by BindaryFieldNd
This commit is contained in:
parent
f5714e1987
commit
2b4be2a375
186
field.py
186
field.py
|
|
@ -251,9 +251,9 @@ class Field3d:
|
||||||
'''Returns a binary array indicating which grid points are above,
|
'''Returns a binary array indicating which grid points are above,
|
||||||
or in case of invert=True below, a given threshold.'''
|
or in case of invert=True below, a given threshold.'''
|
||||||
if invert:
|
if invert:
|
||||||
return self.data>=val
|
|
||||||
else:
|
|
||||||
return self.data<val
|
return self.data<val
|
||||||
|
else:
|
||||||
|
return self.data>=val
|
||||||
|
|
||||||
def coordinate(self,idx,axis=None):
|
def coordinate(self,idx,axis=None):
|
||||||
if axis is None:
|
if axis is None:
|
||||||
|
|
@ -656,19 +656,10 @@ class BinaryFieldNd:
|
||||||
self.labels = None
|
self.labels = None
|
||||||
self.nlabels = 0
|
self.nlabels = 0
|
||||||
self.wrap = tuple(self._ndim*[None])
|
self.wrap = tuple(self._ndim*[None])
|
||||||
self._feat_slice = None
|
self._featsl = None
|
||||||
self.set_structure(False)
|
self.set_structure(False)
|
||||||
self.set_periodicity(self._ndim*[False])
|
self.set_periodicity(self._ndim*[False])
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_threshold(cls,fld,threshold,invert=False):
|
|
||||||
if isinstance(fld,Field3d):
|
|
||||||
fld = fld.data
|
|
||||||
if invert:
|
|
||||||
return cls(fld<threshold)
|
|
||||||
else:
|
|
||||||
return cls(fld>=threshold)
|
|
||||||
|
|
||||||
def set_periodicity(self,periodicity):
|
def set_periodicity(self,periodicity):
|
||||||
assert all([isinstance(x,(bool,int)) for x in periodicity]),\
|
assert all([isinstance(x,(bool,int)) for x in periodicity]),\
|
||||||
"'periodicity' requires bool values."
|
"'periodicity' requires bool values."
|
||||||
|
|
@ -695,7 +686,7 @@ class BinaryFieldNd:
|
||||||
self.labels,self.nlabels,self.wrap = self._labels_periodic()
|
self.labels,self.nlabels,self.wrap = self._labels_periodic()
|
||||||
else:
|
else:
|
||||||
self.labels,self.nlabels = ndimage.label(self.data,structure=self.structure)
|
self.labels,self.nlabels = ndimage.label(self.data,structure=self.structure)
|
||||||
self._feat_slice = ndimage.find_objects(self.labels)
|
self._featsl = ndimage.find_objects(self.labels)
|
||||||
|
|
||||||
def _labels_periodic(self,map_to_zero=False):
|
def _labels_periodic(self,map_to_zero=False):
|
||||||
'''Label features in an array while taking into account periodic wrapping.
|
'''Label features in an array while taking into account periodic wrapping.
|
||||||
|
|
@ -820,6 +811,7 @@ class BinaryFieldNd:
|
||||||
return labels
|
return labels
|
||||||
|
|
||||||
def discard_feature(self,selection):
|
def discard_feature(self,selection):
|
||||||
|
'''Removes a feature from data.'''
|
||||||
if self.labels is None:
|
if self.labels is None:
|
||||||
self.label()
|
self.label()
|
||||||
selection = self._select_feature(selection)
|
selection = self._select_feature(selection)
|
||||||
|
|
@ -852,8 +844,8 @@ class BinaryFieldNd:
|
||||||
data_ = np.logical_not(self.data)
|
data_ = np.logical_not(self.data)
|
||||||
if has_array: data2_ = array
|
if has_array: data2_ = array
|
||||||
else:
|
else:
|
||||||
data_ = (self.labels[self._feat_slice[lab_-1]]==lab_)
|
data_ = (self.labels[self._featsl[lab_-1]]==lab_)
|
||||||
if has_array: data2_ = array[self._feat_slice[lab_-1]]
|
if has_array: data2_ = array[self._featsl[lab_-1]]
|
||||||
# If feature is wrapped periodically, duplicate it and extract
|
# If feature is wrapped periodically, duplicate it and extract
|
||||||
# largest one
|
# largest one
|
||||||
iswrapped = False
|
iswrapped = False
|
||||||
|
|
@ -868,6 +860,7 @@ class BinaryFieldNd:
|
||||||
vol_ = np.bincount(l_.ravel())
|
vol_ = np.bincount(l_.ravel())
|
||||||
il_ = np.argmax(vol_[1:])+1
|
il_ = np.argmax(vol_[1:])+1
|
||||||
sl_ = ndimage.find_objects(l_==il_)[0]
|
sl_ = ndimage.find_objects(l_==il_)[0]
|
||||||
|
print(sl_)
|
||||||
data_ = data_[sl_]
|
data_ = data_[sl_]
|
||||||
if has_array:
|
if has_array:
|
||||||
data2_ = np.tile(data2_,rep_)[sl_]
|
data2_ = np.tile(data2_,rep_)[sl_]
|
||||||
|
|
@ -926,169 +919,6 @@ class BinaryFieldNd:
|
||||||
else:
|
else:
|
||||||
raise ValueError('Invalid input. Accepting int,list,tuple,ndarray.')
|
raise ValueError('Invalid input. Accepting int,list,tuple,ndarray.')
|
||||||
|
|
||||||
class ConnectedRegions:
|
|
||||||
def __init__(self,binarr,periodicity,connect_diagonals=False,fill_holes=False,bytes_label=32):
|
|
||||||
assert isinstance(binarr,np.ndarray) and binarr.dtype==np.dtype('bool'),\
|
|
||||||
"'binarr' must be a numpy array of dtype('bool')."
|
|
||||||
assert all([isinstance(x,(bool,int)) for x in periodicity]),\
|
|
||||||
"'periodicity' requires bool values."
|
|
||||||
assert bytes_label in (8,16,32,64),\
|
|
||||||
"'bytes_label' must be one of {8,16,32,64}."
|
|
||||||
self._dim = binarr.shape
|
|
||||||
self._ndim = binarr.ndim
|
|
||||||
assert self._ndim in (2,3),\
|
|
||||||
"'binarr' must be either two or three dimensional."
|
|
||||||
assert len(periodicity)==self._ndim,\
|
|
||||||
"Length of 'periodicity' must match number of dimensions of data."
|
|
||||||
from scipy import ndimage
|
|
||||||
# Construct connectivity stencil
|
|
||||||
if self._ndim==2:
|
|
||||||
connectivity = np.ones((3,3),dtype='bool')
|
|
||||||
if not connect_diagonals:
|
|
||||||
connectivity[0,0] = False
|
|
||||||
connectivity[0,2] = False
|
|
||||||
connectivity[2,0] = False
|
|
||||||
connectivity[0,2] = False
|
|
||||||
else:
|
|
||||||
connectivity = np.ones((3,3,3),dtype='bool')
|
|
||||||
if not connect_diagonals:
|
|
||||||
connectivity[0,0,0] = False
|
|
||||||
connectivity[2,0,0] = False
|
|
||||||
connectivity[0,2,0] = False
|
|
||||||
connectivity[0,0,2] = False
|
|
||||||
connectivity[2,2,0] = False
|
|
||||||
connectivity[0,2,2] = False
|
|
||||||
connectivity[2,0,2] = False
|
|
||||||
connectivity[2,2,2] = False
|
|
||||||
# Compute labels:
|
|
||||||
# this does not take into account periodic wrapping
|
|
||||||
dtype_label = np.dtype('uint'+str(bytes_label))
|
|
||||||
self.label = np.empty(self._dim,dtype=dtype_label)
|
|
||||||
ndimage.label(binarr,structure=connectivity,output=self.label)
|
|
||||||
self.count = np.max(self.label)
|
|
||||||
# Merge labels if there are periodic overlaps
|
|
||||||
map_tgt = np.array(range(0,self.count+1),dtype=dtype_label)
|
|
||||||
for axis in range(self._ndim):
|
|
||||||
if not periodicity[axis]:
|
|
||||||
continue
|
|
||||||
# Merge the first and last plane and compute connectivity
|
|
||||||
sl = self._ndim*[slice(None)]
|
|
||||||
sl[axis] = (-1,0)
|
|
||||||
binarr_ = binarr[tuple(sl)]
|
|
||||||
label_ = np.empty(binarr_.shape,dtype=dtype_label)
|
|
||||||
ndimage.label(binarr_,structure=connectivity,output=label_)
|
|
||||||
for val_ in np.unique(label_):
|
|
||||||
# Get all global labels which are associated to a region
|
|
||||||
# connected over the boundary
|
|
||||||
global_labels = list(np.unique(self.label[tuple(sl)][label_==val_]))
|
|
||||||
# If there is only one label, nothing needs to be done
|
|
||||||
if len(global_labels)==1:
|
|
||||||
continue
|
|
||||||
# Determine target label:
|
|
||||||
# this needs to be done recursively because the original
|
|
||||||
# target may already be reassigned
|
|
||||||
tgt = global_labels[0]
|
|
||||||
while tgt!=map_tgt[tgt]:
|
|
||||||
tgt=map_tgt[tgt]
|
|
||||||
map_tgt[global_labels[1:]] = tgt
|
|
||||||
# Remove gaps from target mapping
|
|
||||||
map_tgt = np.unique(map_tgt,return_inverse=True)[1]
|
|
||||||
# Remap labels
|
|
||||||
self.label = map_tgt[self.label]
|
|
||||||
self.count = np.max(map_tgt)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_field(cls,fld3d,threshold,periodicity,connect_diagonals=False,bytes_label=32,invert=False):
|
|
||||||
voxthr = VoxelThreshold.from_field(fld3d,threshold,invert=invert)
|
|
||||||
return cls.from_voxelthresh(voxthr,periodicity,
|
|
||||||
connect_diagonals=connect_diagonals,
|
|
||||||
bytes_label=bytes_label)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_voxelthresh(cls,voxthr,periodicity,connect_diagonals=False,bytes_label=32):
|
|
||||||
return cls(voxthr.data,periodicity,
|
|
||||||
connect_diagonals=connect_diagonals,
|
|
||||||
bytes_label=bytes_label)
|
|
||||||
|
|
||||||
|
|
||||||
def volume(self,label=None):
|
|
||||||
'''Returns volume of labeled regions. If 'label' is None all volumes
|
|
||||||
are returned including the volume of the background region. The array
|
|
||||||
is sorted by labels, i.e. vol[0] is the volume of the background region,
|
|
||||||
vol[1] the volume of label 1, etc. If 'label' is an integer value, only
|
|
||||||
the volume of the corresponding region is returned.
|
|
||||||
Note: it is more efficient to retrieve all volumes at once than querying
|
|
||||||
single labels.'''
|
|
||||||
if label is None:
|
|
||||||
return np.bincount(self.label.ravel())
|
|
||||||
else:
|
|
||||||
return np.sum(self.label==label)
|
|
||||||
|
|
||||||
def volume_domain(self):
|
|
||||||
'''Returns volume of entire domain. Should be equal to sum(volume()).'''
|
|
||||||
return np.prod(self._dim)
|
|
||||||
|
|
||||||
def labels_by_volume(self,descending=True):
|
|
||||||
'''Returns labels of connected regions sorted by volume.'''
|
|
||||||
labels = np.argsort(self.volume()[1:])+1
|
|
||||||
if descending:
|
|
||||||
labels = labels[::-1]
|
|
||||||
return labels
|
|
||||||
|
|
||||||
def discard_regions(self,selection):
|
|
||||||
selection = self._parse_selection(selection)
|
|
||||||
# Map tagged regions to zero in order to discard them
|
|
||||||
map_tgt = np.array(range(0,self.count+1),dtype=self.label.dtype)
|
|
||||||
map_tgt[selection] = 0
|
|
||||||
# Remove gaps from target mapping
|
|
||||||
map_tgt = np.unique(map_tgt,return_inverse=True)[1]
|
|
||||||
# Discard regions
|
|
||||||
self.label = map_tgt[self.label]
|
|
||||||
self.count = np.max(map_tgt)
|
|
||||||
|
|
||||||
def probe(self,idx):
|
|
||||||
'''Returns label for given index.'''
|
|
||||||
return self.label[tuple(idx)]
|
|
||||||
|
|
||||||
def vtk_contour(self,fld3,val,selection):
|
|
||||||
'''Computes contours of a Field3d only within selected structures.'''
|
|
||||||
assert isinstance(fld3,Field3d), "'fld3' must be a Field3d instance."
|
|
||||||
assert tuple(self._dim)==tuple(fld3.dim()), \
|
|
||||||
"'fld3' must be of dimension {}.".format(self._dim)
|
|
||||||
selection = self._parse_selection(selection)
|
|
||||||
from scipy import ndimage
|
|
||||||
# Create binary map of selection
|
|
||||||
map_tgt = np.zeros(self.count+1,dtype='bool')
|
|
||||||
map_tgt[selection] = True
|
|
||||||
binary_map = map_tgt[self.label]
|
|
||||||
# Add an extra cell to get the contour interpolation right
|
|
||||||
print(np.sum(binary_map))
|
|
||||||
binary_map = ndimage.binary_dilation(binary_map)
|
|
||||||
print(np.sum(binary_map))
|
|
||||||
# Extract the subfield
|
|
||||||
fld_con = fld3.copy()
|
|
||||||
fld_con.data[~binary_map] = np.nan
|
|
||||||
# Compute the contour
|
|
||||||
return fld_con.vtk_contour(val)
|
|
||||||
|
|
||||||
def _parse_selection(self,selection):
|
|
||||||
dtype = self.label.dtype
|
|
||||||
if np.issubdtype(type(selection),np.integer):
|
|
||||||
return np.array(selection,dtype=dtype)
|
|
||||||
elif isinstance(selection,(list,tuple,np.ndarray)):
|
|
||||||
selection = np.array(selection)
|
|
||||||
if selection.dtype==np.dtype('bool'):
|
|
||||||
assert selection.ndim==1 and selection.shape[0]==self.count+1,\
|
|
||||||
"Boolean indexing must provide count+1 values."
|
|
||||||
else:
|
|
||||||
selection = selection.astype(dtype)
|
|
||||||
assert np.max(selection)<=self.count and np.min(selection)>=0,\
|
|
||||||
"Entry in selection is out-of-bounds."
|
|
||||||
return selection
|
|
||||||
else:
|
|
||||||
raise ValueError('Invalid input. Accepting int,list,tuple,ndarray.')
|
|
||||||
|
|
||||||
|
|
||||||
class ChunkIterator:
|
class ChunkIterator:
|
||||||
'''Iterates through all chunks. 'snapshot' must be an instance
|
'''Iterates through all chunks. 'snapshot' must be an instance
|
||||||
of a class which returns a Field3d from the method call
|
of a class which returns a Field3d from the method call
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue