just a backup, will be changed now
This commit is contained in:
parent
2acef17323
commit
16e67ad666
86
field.py
86
field.py
|
|
@ -659,7 +659,6 @@ class Features3d:
|
|||
# Assign basic properties to class variables
|
||||
self.origin = np.array(origin,dtype=np.float)
|
||||
self.spacing = np.array(spacing,dtype=np.float)
|
||||
self.dimensions = np.array(input.shape,dtype=np.int)
|
||||
self.periodicity = tuple(bool(x) for x in periodicity)
|
||||
# If regions are supposed to be inverted, i.e. the interior consists of values
|
||||
# smaller than the threshold instead of larger, change the sign of the array.
|
||||
|
|
@ -674,6 +673,7 @@ class Features3d:
|
|||
else:
|
||||
pw = tuple((0,1) if x else (0,0) for x in periodicity)
|
||||
self._input = np.pad(sign_invert*input,pw,mode='wrap')
|
||||
self.dimensions = np.array(self._input.shape,dtype=np.int)
|
||||
# Triangulate
|
||||
self.triangulate(contour_method=contour_method,
|
||||
cellvol_normal_component=cellvol_normal_component,
|
||||
|
|
@ -700,12 +700,13 @@ class Features3d:
|
|||
import pyvista as pv
|
||||
import vtk
|
||||
from scipy import ndimage, spatial
|
||||
from scipy.spatial import KDTree
|
||||
from time import time
|
||||
# Check if '_input' is available: might have been dropped after initialization
|
||||
assert self._input is not None, "'_input' not available. Initialize object with keep_input=True flag."
|
||||
# Wrap data for VTK using pyvista
|
||||
datavtk = pv.UniformGrid()
|
||||
datavtk.dimensions = self._input.shape
|
||||
datavtk.dimensions = self.dimensions
|
||||
datavtk.origin = self.origin
|
||||
datavtk.spacing = self.spacing
|
||||
datavtk.point_arrays['data'] = self._input.ravel('F')
|
||||
|
|
@ -714,6 +715,87 @@ class Features3d:
|
|||
if report: print('[Features3d.triangulate] computing isocontour using {}...'.format(contour_method))
|
||||
contour = datavtk.contour([self._threshold],method=contour_method,compute_scalars=False,compute_gradients=True)
|
||||
assert contour.is_all_triangles(), "Contouring produced non-triangle cells."
|
||||
# Compute contour on boundaries: this is necessary for inside/outside checks and proper
|
||||
# volume computation for overlapping objects
|
||||
t__ = time()
|
||||
self._faces_bd = []
|
||||
self._points_bd = []
|
||||
offset_pts = contour.n_points
|
||||
print(offset_pts)
|
||||
for axis in range(3):
|
||||
# Build a nearest-neighbor search KD-trees for boundary points so that we can connect
|
||||
# them to the boundary faces when needed
|
||||
# t__ = time()
|
||||
pos_bd_lo = self.origin[axis]
|
||||
pos_bd_hi = self.origin[axis]+self.spacing[axis]*(self.dimensions[axis]-1)
|
||||
search_dist = 1e-5*self.spacing[axis]
|
||||
idx_lo = np.flatnonzero(np.abs(contour.points[:,axis]-pos_bd_lo)<search_dist)
|
||||
idx_hi = np.flatnonzero(np.abs(contour.points[:,axis]-pos_bd_lo)<search_dist)
|
||||
sl_pln = [0,1,2]
|
||||
del sl_pln[axis]
|
||||
# print(len(idx_lo),len(idx_hi))
|
||||
# kd_lo = KDTree(contour.points[np.ix_(idx_lo,sl_pln)],leafsize=10,compact_nodes=True,copy_data=False,balanced_tree=True)
|
||||
# kd_hi = KDTree(contour.points[np.ix_(idx_hi,sl_pln)],leafsize=10,compact_nodes=True,copy_data=False,balanced_tree=True)
|
||||
# print('KD tree build:',time()-t__)
|
||||
# Compute the contour on the boundary: the normal should point outwards.
|
||||
sl_lo = 3*[slice(None)]
|
||||
sl_lo[axis] = 0
|
||||
sl_hi = 3*[slice(None)]
|
||||
sl_hi[axis] = -1
|
||||
origin = self.origin.copy()
|
||||
origin[axis] -= self.spacing[axis]
|
||||
dimensions = self.dimensions.copy()
|
||||
dimensions[axis] = 2
|
||||
#
|
||||
tmp = np.empty(dimensions,dtype=self._input.dtype,order='F')
|
||||
tmp[tuple(sl_hi)] = self._input[tuple(sl_lo)]
|
||||
tmp[tuple(sl_lo)] = -1e-30
|
||||
print(origin)
|
||||
print(self.spacing)
|
||||
print(dimensions)
|
||||
#
|
||||
planevtk = pv.UniformGrid()
|
||||
planevtk.dimensions = dimensions
|
||||
planevtk.spacing = self.spacing
|
||||
planevtk.origin = origin
|
||||
planevtk.point_arrays['data'] = tmp.ravel('F')
|
||||
# Contour for lower boundary
|
||||
contour_bd = planevtk.contour([self._threshold],method=contour_method)
|
||||
faces_bd = contour_bd.faces.reshape(-1,4).copy()
|
||||
points_bd = contour_bd.points.copy()
|
||||
print(points_bd)
|
||||
# Find points which connect to main contour and update faces
|
||||
kd = KDTree(points_bd[:,sl_pln],leafsize=10,compact_nodes=True,copy_data=False,balanced_tree=True)
|
||||
kddist = 1e-1*self.spacing[axis]
|
||||
print(kddist)
|
||||
# ptidx = kd.query(contour.points[np.ix_(idx_lo,sl_pln)],k=1)#,distance_upper_bound=kddist)
|
||||
ptidx = kd.query(contour.points[np.ix_(idx_lo,sl_pln)],k=1)#,distance_upper_bound=kddist)
|
||||
# print(ptidx[0])
|
||||
# print(np.min(contour.points[idx_lo,0]),np.max(contour.points[idx_lo,0]))
|
||||
print(np.min(points_bd[:,0]),np.max(points_bd[:,0]))
|
||||
print('connections:',np.sum(ptidx[0]<kddist))
|
||||
print('boundary points:',points_bd[:,sl_pln].shape)
|
||||
print('selected points:',contour.points[np.ix_(idx_lo,sl_pln)].shape)
|
||||
stop
|
||||
#
|
||||
if self.periodicity[axis]:
|
||||
sl_swap = [1,2,3]
|
||||
del sl_swap[axis]
|
||||
self._faces_bd += [contour_bd.faces.reshape(-1,4).copy()]
|
||||
self._faces_bd[-1][:,sl_swap] = self._faces_bd[-1][:,sl_swap[::-1]]
|
||||
self._points_bd += [contour_bd.points.copy()]
|
||||
self._points_bd[-1][axis] += self.spacing[axis]*(self.dimensions[axis]-1)
|
||||
else:
|
||||
origin[axis] = self.origin[axis]+self.spacing[axis]*(self.dimensions[axis]-1)
|
||||
tmp[tuple(sl_lo)] = self._input[tuple(sl_hi)]
|
||||
tmp[tuple(sl_hi)] = -1e-30
|
||||
planevtk.origin = origin
|
||||
planevtk.point_arrays['data'] = tmp.ravel('F')
|
||||
contour_bd = planevtk.contour([self._threshold],method=contour_method)
|
||||
self._faces_bd += [contour_bd.faces.reshape(-1,4).copy()]
|
||||
self._points_bd += [contour_bd.points.copy()]
|
||||
print('boundary contour:',time()-t__)
|
||||
#
|
||||
# Compute the connectivity of the triangulated surface: first we run an ordinary
|
||||
# connectivity filter neglecting periodic wrapping.
|
||||
if report: print('[Features3d.triangulate] computing connectivity...')
|
||||
|
|
|
|||
Loading…
Reference in New Issue