just a backup, will be changed now

This commit is contained in:
Michael Krayer 2021-08-17 23:19:45 +02:00
parent 2acef17323
commit 16e67ad666
1 changed files with 84 additions and 2 deletions

View File

@ -659,7 +659,6 @@ class Features3d:
# Assign basic properties to class variables
self.origin = np.array(origin,dtype=np.float)
self.spacing = np.array(spacing,dtype=np.float)
self.dimensions = np.array(input.shape,dtype=np.int)
self.periodicity = tuple(bool(x) for x in periodicity)
# If regions are supposed to be inverted, i.e. the interior consists of values
# smaller than the threshold instead of larger, change the sign of the array.
@ -674,6 +673,7 @@ class Features3d:
else:
pw = tuple((0,1) if x else (0,0) for x in periodicity)
self._input = np.pad(sign_invert*input,pw,mode='wrap')
self.dimensions = np.array(self._input.shape,dtype=np.int)
# Triangulate
self.triangulate(contour_method=contour_method,
cellvol_normal_component=cellvol_normal_component,
@ -700,12 +700,13 @@ class Features3d:
import pyvista as pv
import vtk
from scipy import ndimage, spatial
from scipy.spatial import KDTree
from time import time
# Check if '_input' is available: might have been dropped after initialization
assert self._input is not None, "'_input' not available. Initialize object with keep_input=True flag."
# Wrap data for VTK using pyvista
datavtk = pv.UniformGrid()
datavtk.dimensions = self._input.shape
datavtk.dimensions = self.dimensions
datavtk.origin = self.origin
datavtk.spacing = self.spacing
datavtk.point_arrays['data'] = self._input.ravel('F')
@ -714,6 +715,87 @@ class Features3d:
if report: print('[Features3d.triangulate] computing isocontour using {}...'.format(contour_method))
contour = datavtk.contour([self._threshold],method=contour_method,compute_scalars=False,compute_gradients=True)
assert contour.is_all_triangles(), "Contouring produced non-triangle cells."
# Compute contour on boundaries: this is necessary for inside/outside checks and proper
# volume computation for overlapping objects
t__ = time()
self._faces_bd = []
self._points_bd = []
offset_pts = contour.n_points
print(offset_pts)
for axis in range(3):
# Build a nearest-neighbor search KD-trees for boundary points so that we can connect
# them to the boundary faces when needed
# t__ = time()
pos_bd_lo = self.origin[axis]
pos_bd_hi = self.origin[axis]+self.spacing[axis]*(self.dimensions[axis]-1)
search_dist = 1e-5*self.spacing[axis]
idx_lo = np.flatnonzero(np.abs(contour.points[:,axis]-pos_bd_lo)<search_dist)
idx_hi = np.flatnonzero(np.abs(contour.points[:,axis]-pos_bd_lo)<search_dist)
sl_pln = [0,1,2]
del sl_pln[axis]
# print(len(idx_lo),len(idx_hi))
# kd_lo = KDTree(contour.points[np.ix_(idx_lo,sl_pln)],leafsize=10,compact_nodes=True,copy_data=False,balanced_tree=True)
# kd_hi = KDTree(contour.points[np.ix_(idx_hi,sl_pln)],leafsize=10,compact_nodes=True,copy_data=False,balanced_tree=True)
# print('KD tree build:',time()-t__)
# Compute the contour on the boundary: the normal should point outwards.
sl_lo = 3*[slice(None)]
sl_lo[axis] = 0
sl_hi = 3*[slice(None)]
sl_hi[axis] = -1
origin = self.origin.copy()
origin[axis] -= self.spacing[axis]
dimensions = self.dimensions.copy()
dimensions[axis] = 2
#
tmp = np.empty(dimensions,dtype=self._input.dtype,order='F')
tmp[tuple(sl_hi)] = self._input[tuple(sl_lo)]
tmp[tuple(sl_lo)] = -1e-30
print(origin)
print(self.spacing)
print(dimensions)
#
planevtk = pv.UniformGrid()
planevtk.dimensions = dimensions
planevtk.spacing = self.spacing
planevtk.origin = origin
planevtk.point_arrays['data'] = tmp.ravel('F')
# Contour for lower boundary
contour_bd = planevtk.contour([self._threshold],method=contour_method)
faces_bd = contour_bd.faces.reshape(-1,4).copy()
points_bd = contour_bd.points.copy()
print(points_bd)
# Find points which connect to main contour and update faces
kd = KDTree(points_bd[:,sl_pln],leafsize=10,compact_nodes=True,copy_data=False,balanced_tree=True)
kddist = 1e-1*self.spacing[axis]
print(kddist)
# ptidx = kd.query(contour.points[np.ix_(idx_lo,sl_pln)],k=1)#,distance_upper_bound=kddist)
ptidx = kd.query(contour.points[np.ix_(idx_lo,sl_pln)],k=1)#,distance_upper_bound=kddist)
# print(ptidx[0])
# print(np.min(contour.points[idx_lo,0]),np.max(contour.points[idx_lo,0]))
print(np.min(points_bd[:,0]),np.max(points_bd[:,0]))
print('connections:',np.sum(ptidx[0]<kddist))
print('boundary points:',points_bd[:,sl_pln].shape)
print('selected points:',contour.points[np.ix_(idx_lo,sl_pln)].shape)
stop
#
if self.periodicity[axis]:
sl_swap = [1,2,3]
del sl_swap[axis]
self._faces_bd += [contour_bd.faces.reshape(-1,4).copy()]
self._faces_bd[-1][:,sl_swap] = self._faces_bd[-1][:,sl_swap[::-1]]
self._points_bd += [contour_bd.points.copy()]
self._points_bd[-1][axis] += self.spacing[axis]*(self.dimensions[axis]-1)
else:
origin[axis] = self.origin[axis]+self.spacing[axis]*(self.dimensions[axis]-1)
tmp[tuple(sl_lo)] = self._input[tuple(sl_hi)]
tmp[tuple(sl_hi)] = -1e-30
planevtk.origin = origin
planevtk.point_arrays['data'] = tmp.ravel('F')
contour_bd = planevtk.contour([self._threshold],method=contour_method)
self._faces_bd += [contour_bd.faces.reshape(-1,4).copy()]
self._points_bd += [contour_bd.points.copy()]
print('boundary contour:',time()-t__)
#
# Compute the connectivity of the triangulated surface: first we run an ordinary
# connectivity filter neglecting periodic wrapping.
if report: print('[Features3d.triangulate] computing connectivity...')